Abstract
Motor synergies have been investigated since the 1980s as a simplifying representation of motor control by the nervous system. This way of representing finger positional data is in particular useful to represent the kinematics of the human hand. Whereas, so far, the focus has been on kinematic synergies, that is common patterns in the motion of the hand and fingers, we hereby also investigate their force aspects, evaluated through surface electromyography (sEMG). We especially show that force-related motor synergies exist, i.e. that muscle activation during grasping, as described by the sEMG signal, can be grouped synergistically; that these synergies are largely comparable to one another across human subjects notwithstanding the disturbances and inaccuracies typical of sEMG; and that they are physiologically feasible representations of muscular activity during grasping. Potential applications of this work include force control of mechanical hands, especially when many degrees of freedom must be simultaneously controlled.
Similar content being viewed by others
Notes
Recall that from now on we will be using the dataset obtained by averaging out the sensor values over the carrying phases identified during the preprocessing phase.
References
Arbib M, Metta G, van der Smagt P (2008) Neurorobotics: from vision to action, Chap. 62. Springer, Berlin, pp 1453–1480
Atzori M, Gijsberts A, Heynen S, Mittaz-Hager AG, Deriaz O, van der Smagt P, Castellini C, Caputo B, Müller H (2012) Building the NINAPRO database: a resource for the biorobotics community. In: Proceedings of BioRob—IEEE international conference on biomedical robotics and biomechatronics, pp 1258–1265
Bernstein N (1967) The coordination and regulation of movements. Pergamon Press, Oxford
Bicchi A, Gabiccini M, Santello M (2011) Modelling natural and artificial hands with synergies. Philos Trans R Soc London. Ser B, Biol Sci 366(1581):3153–3161. doi:10.1098/rstb.2011.0152
Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Haussler D (ed) Proceedings of the 5th annual ACM workshop on computational learning theory, ACM press, pp 144–152
Brochier T, Spinks RL, Umiltà MA, Lemon RN (2004) Patterns of muscle activity underlying object-specific grasp by the macaque monkey. J Neurophysiol 92(3):1770–1782
Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Knowl Discov Data Min 2(2):955–974
Castellini C, Fiorilla AE, Sandini G (2009) Multi-subject/daily-life activity EMG-based control of mechanical hands. J Neuroeng Rehabil 6(41). doi:10.1186/1743-0003-6-41.
Castellini C, Gruppioni E, Davalli A, Sandini G (2009) Fine detection of grasp force and posture by amputees via surface electromyography. JPhysiol 103(3–5):255–262. doi:10.1016/j.jphysparis.2009.08.008
Castellini C, van der Smagt P (2009) Surface EMG in advanced hand prosthetics. Biol Cybern 100(1):35–47. doi:10.1007/s00422-008-0278-1
Castellini C, van der Smagt P (2011) Preliminary evidence of dynamic muscular synergies in human grasping. In: Proceedings of ICAR—international conference on, advanced robotics, pp 28–33 doi:10.1109/ICAR.2011.6088612
Cipriani C, Antfolk C, Controzzi M, Lundborg G, Rosén B, Carrozza M, Sebelius F (2011) Online myoelectric control of a dexterous hand prosthesis by transradial amputees. IEEE Trans Neural Syst Rehabi Eng 19(3):260–270. doi:10.1109/TNSRE.2011.2108667
Cutkosky M (1989) On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Transa Robot Autom 5(3): 269–279
De Luca CJ (1997) The use of surface electromyography in biomechanics. J Appl Biomech 13(2):135–163
De Luca CJ (2002) Surface electromyography: detection and recording. Copyright 2002 by DelSys, Inc.
Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2 edn. Wiley, New York
Grebenstein M, van der Smagt P (2008) Antagonism for a highly anthropomorphic hand-arm system. Adv Robot 22(1):39–55. doi:10.1163/156855308X291836
Grinyagin IV, Biryukova EV, Maier MA (2005) Kinematic and dynamic synergies of human precision-grip movements. J Neurophysiol 94(4):2284–2294
Nawab HS, Wotiz RP, De Luca CJ (2008) Decomposition of indwelling EMG signals. J Appl Physiol 105:700–710
Holdefer RN, Miller LE (2002) Primary motor cortical neurons encode functional muscle synergies. Exp Brain Res 146(2):233–243
Kang SB, Ikeuchi K (1993) A grasp abstraction hierarchy for recognition of grasping tasks from observation. Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, Yokohama
Lang CE, Schieber MH (2004) Human finger independence: limitations due to passive mechanical coupling versus active neuromuscular control. J Neurophysiol 92(5):2802–2810
Mussa-Ivaldi FA, Giszter SF, Bizzi E (1994) Linear combinations of primitives in vertebrate motor control. Proc Natl Acad Sci USA 91(16):7534–7538
Nilsson J (2004) Implementing a continuously updating, high-resolution time provider for windows. The MSDN Magazine
Orabona F, Castellini C, Caputo B, Fiorilla E, Sandini G (2009) Model adaptation with least-squares SVM for hand prosthetics. In: Proceedings of ICRA—International Conference on Robotics and Automation, pp 2897–2903 doi:10.1109/ROBOT.2009.5152247.
Overduin SA, d’Avella A, Roh J, Bizzi E (2008) Modulation of muscle synergy recruitment in primate grasping. J Neurosci 28(4):880–892
Santello M, Flanders M, Soechting JF (1998) Postural synergies for tool use. Neuroscience 17:10105–10115
Santello M, Flanders M, Soechting JF (2002) Patterns of hand motion during grasping and the influence of sensory guidance. Neuroscience 22(4):1426–1435
Sebelius FCP, Rosén BN, Lundborg GN (2005) Refined myoelectric control in below-elbow amputees using artificial neural networks and a data glove. J Hand Surg 30(4):780–789
Stillfried G, van der Smagt P (2010) Movement model of a human hand based on magnetic resonance imaging (MRI). International Conference on Applied Bionics and Biomechanics (ICABB), Venice
Takei T, Seki K (2010) Spinal interneurons facilitate coactivation of hand muscles during a precision grip task in monkeys. J Neurosci 30(50):17041–17050
Tenore FV, Ramos A, Fahmy A, Acharya S, Etienne-Cummings R, Thakor NV (2009) Decoding of individuated finger movements using surface electromyography. IEEE Trans Biomed Eng 56(5): 1427–1434
Tommasi T, Orabona F, Castellini C, Caputo B (2012) Improving control of dexterous hand prostheses using adaptive learning. IEEE Transactions on Robotics. doi:10.1109/TRO.2012.2226386
Tsuji H, Ichinobe H, Ito K, Nagamachi M (1993) Discrimination of forearm motions from emg signals by error back propagation typed neural network using entropy. IEEE Trans Soc Instrum Control Eng 29(10):1213–1220
Vapnik VN (1998) Stat Learn Theory. Wiley, New York
Vogel J, Castellini C, van der Smagt P (2011) EMG-based teleoperation and manipulation with the DLR LWR-III. In: Proceedings of IROS —international conference on intelligent robots and systems, pp 672–678. doi:10.1109/IROS.2011.6048345
Wimböck T, Jahn B, Hirzinger G (2011) Synergy level impedance control for multifingered hands. In: Intelligent robots and systems (IROS), 2011 IEEE/RSJ International Conference on, pp 973–979
Zecca M, Micera S, Carrozza MC, Dario P (2002) Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit Rev Biomed Eng 30(4–6):459–485
Acknowledgments
This work is partially supported by the European FP7-Project THE Hand Embodied (FP7-IST-248257) and by the Swiss National Science Foundation Sinergia project #132700, Ninapro (Non-Invasive Adaptive Prosthetics). The authors would also like to thank Mr. Johann Buchner of the DLR for building some of the electronics involved in the setup. Legal compliance the authors declare that the experiment described in this paper complies with the current relevant German laws.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Castellini, C., van der Smagt, P. Evidence of muscle synergies during human grasping. Biol Cybern 107, 233–245 (2013). https://doi.org/10.1007/s00422-013-0548-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00422-013-0548-4