Time scales of memory, learning, and plasticity

Abstract

After only about 10 days would the storage capacity of our nervous system be reached if we stored every bit of input. The nervous system relies on at least two mechanisms that counteract this capacity limit: compression and forgetting. But the latter mechanism needs to know how long an entity should be stored: some memories are relevant only for the next few minutes, some are important even after the passage of several years. Psychology and physiology have found and described many different memory mechanisms, and these mechanisms indeed use different time scales. In this prospect we review these mechanisms with respect to their time scale and propose relations between mechanisms in learning and memory and their underlying physiological basis.

References

  1. Adelsberger-Mangan DM, Levy WB (1994) The influence of limited presynaptic growth and synapse removal on adaptive synaptogenesis. Biol Cybern 71: 461–468

    CAS  PubMed  Google Scholar 

  2. Agranoff BW, Davis RE, Brink JJ (1966) Chemical studies on memory fixation in goldfish. Brain Res 1(3): 303–309

    CAS  PubMed  Google Scholar 

  3. Anderson RB, Tweney RD (1997) Artifactual power curves in forgetting. Mem Cognit 25(6): 867–872

    CAS  PubMed  Google Scholar 

  4. Baddeley AD, Hitch G (1974) Working memory. In: Bower G (ed) The psychology of learning and motivation: advances in research and theory, vol 8. Academic, New York, pp 47–89

  5. Barak O, Tsodyks M (2007) Persistent activity in neural networks with dynamic synapses. PLoS Comput Biol 3(2): e35

    PubMed Central  PubMed  Google Scholar 

  6. Barak O, Tsodyks M, Romo R (2010) Neuronal population coding of parametric working memory. J Neurosci 30(28): 9424–9430

    CAS  PubMed  Google Scholar 

  7. Barbieri F, Brunel N (2008) Can attractor network models account for the statistics of firing during persistent activity in prefrontal cortex?. Front Comput Neurosci 2(1): 114–122

    Google Scholar 

  8. Bi G, Poo M (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24): 10,464–10,472

    CAS  Google Scholar 

  9. Bienenstock E, Cooper LN, Munro P (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2(2): 23–48

    Google Scholar 

  10. Bishop CM (2007) Pattern recognition and machine learning (information science and statistics). Springer, New York

  11. Bliss TVP, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2): 331–356

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Braitenberg V (1984) Vehicles

  13. Bressloff PC (1999) Mean-field theory of globally coupled integrate-and-fire neural oscillators with dynamic synapses. Phys Rev E 60(2): 2160–2170

    CAS  Google Scholar 

  14. Brown J (1958) Some tests of the decay theory of immediate memory. Q J Exp Psychol 10(1): 12–21

    Google Scholar 

  15. Buonomano DV, Maass W (2009) State-dependent computations: spatiotemporal processing in cortical networks. Nat Rev Neurosci 10(2): 113–125

    CAS  PubMed  Google Scholar 

  16. Büsing L, Schrauwen B, Legenstein R (2010) Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons. Neural Comput 22: 1272–1311

    PubMed  Google Scholar 

  17. Butz M, Teuchert-Noodt G, Grafen K, van Ooyen A (2008) Inverse relationship between adult hippocampal cell proliferation and synaptic rewiring in the dentate gyrus. Hippocampus 18(9): 879–898

    PubMed  Google Scholar 

  18. Butz M, Wörgötter F, van Ooyen A (2009) Activity-dependent structural plasticity. Brain Res Rev 60(2): 287–305

    PubMed  Google Scholar 

  19. Carla Shatz J (1992) The developing brain. Sci Am 267: 60–67

    Google Scholar 

  20. Caroni P, Donato F, Muller D (2012) Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci 13: 478–490

    CAS  PubMed  Google Scholar 

  21. Chen BL, Hall DH, Chklovskii DB (2006) Wiring optimization can relate neuronal structure and function. Proc Natl Acad Sci USA 103(12): 4723–4728

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Chklovskii D, Mel BW, Svoboda K (2004) Cortical rewiring and information storage. Nature 431: 782–788

    CAS  PubMed  Google Scholar 

  23. Clopath C, Ziegler L, Vasilaki E, Büsing, Gerstner W (2008) Tag-trigger-consolidation: a model of early and late long-term potentiation and depression. PLoS Comput Biol 4:e10000248

  24. Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith EE (1997) Temporal dynamics of brain activation during a working memory task. Nature 386(6625): 604–608

    CAS  PubMed  Google Scholar 

  25. Cowan N (1995) Attention and memory: an integrated framework. Oxford University Press, New York

  26. Cowan N (2001) The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav Brain Sci 4: 87–185

    Google Scholar 

  27. Cowan N (2005) Working memory capacity. Psychology Press, New York

  28. Cutsuridis V, Wennekers T (2009) Hippocampus, microcircuits and associative memory. Neural Netw 22(8): 1120–1128

    PubMed  Google Scholar 

  29. Dabbish NS, Raizen DM (2011) GABAergic synaptic plasticity during a developmentally regulated sleep-like state in C. elegans. J Neurosci 31(44): 15,932–15,943

    CAS  Google Scholar 

  30. Daneman M, Carpenter PA (1980) Individual differences in working memory and reading. J Verbal Learn Verbal Behav 466: 450–466

    Google Scholar 

  31. Davis GW (2006) Homeostatic control of neural activity: from phenomenology to molecular design. Annu Rev Neurosci 29: 307–323

    CAS  PubMed  Google Scholar 

  32. Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11(2): 114–126

    CAS  PubMed  Google Scholar 

  33. Duda RO, Hart PE, Stork DG (2000) Pattern classification. Wiley-Interscience, New York

  34. Dudai Y (2002) Memory from A to Z: keywords, concepts, and beyond. Oxford University Press, Oxford

    Google Scholar 

  35. Dudai Y (2004) The neurobiology of consolidations, or, how stable is the engram?. Annu Rev Psychol 55: 51–86

    PubMed  Google Scholar 

  36. Dudek S, Bear M (1992) Homosynaptic long-term depression in area ca1 of hippocampus and effects of N-methyl-d-aspartate receptor blockade. Proc Natl Acad Sci USA 89(10): 4363–4367

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Durstewitz D, Seamans JK, Sejnowski TJ (2000) Neurocomputational models of working memory. Nat Neurosci 3: 1184–1191

    CAS  PubMed  Google Scholar 

  38. Ericsson KA, Kintsch W (1995) Long-term working memory. Psychol Rev 102: 211–245

    CAS  PubMed  Google Scholar 

  39. Floreano D, Mondada F (1996) Evolution of plastic neurocontrollers for situated agents. In: Maes P, Mataric J, Meyer J-A, Pollack J, Wilson S (eds) From Animals to Animats 4: Proceedings of the 4th international conference on simulation of adaptive behavior. MIT Press, Cambridge, pp 401–411

  40. Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6(2): 119–130

    CAS  PubMed  Google Scholar 

  41. Frankland PW, Brien CO, Ohno M, Kirkwood A, Silva AJ (2001) α-CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature 411: 309–313

    CAS  PubMed  Google Scholar 

  42. Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ (2004) The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304(5672): 881–883

    CAS  PubMed  Google Scholar 

  43. Frey U, Morris R (1997) Synaptic tagging and long-term potentiation. Nature 385: 533–536

    CAS  PubMed  Google Scholar 

  44. Froemke RC, Poo Mm, Dan Y (2005) Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 2033:2032–2033

  45. Frolov AA, Husek D (2000) The convergence time in Hopfield network. In: Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks, vol 5, Como, pp 622–626

  46. Funahashi S, Bruce JC, Goldman-Rakic SP (1989) Mnemonic coding of visual space in the monkeys dorsolateral prefrontal cortex. J Neurophysiol 6(2): 331–349

    Google Scholar 

  47. Fusi S, Drew PJ, Abbott LF (2005) Cascade models of synaptically stored memories. Neuron 45: 599–611

    CAS  PubMed  Google Scholar 

  48. Fuster JM (1973) Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol 36(1): 61–78

    CAS  PubMed  Google Scholar 

  49. Ganguli S, Huh D, Sompolinsky H (2008) Memory traces in dynamical systems. Proc Natl Acad Sci USA 105(48): 18,970–18,975

    CAS  Google Scholar 

  50. Garner AR, Rowland DC, Hwang SY, Baumgaertel K, Roth BL, Kentros C, Mayford M (2012) Generation of a synthetic memory trace. Science 335: 1513–1516

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Gerstner W, Kistler WM (2002) Mathematical formulations of Hebbian learning. Biol Cybern 87: 404–415

    PubMed  Google Scholar 

  52. Gerstner W, Kempter R, van Hemmen L, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383: 76–78

    CAS  PubMed  Google Scholar 

  53. Golding NL, Staff NP, Spruston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418: 326– 331

    CAS  PubMed  Google Scholar 

  54. Graupner M, Brunel N (2012) Calcium-based plasticity model explains sensitivity of synaptic changes tp spike pattern, rate, and dendritc location. Proc Natl Acad Sci USA 109(10): 3991–3996

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Gründemann J, Häusser M (2010) A plastic axonal hotspot. Nature 465: 1022–1023

    PubMed  Google Scholar 

  56. Haas JS, Nowotny T, Abarbanel HDI (2006) Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. J Neurophysiol 96(6): 3305–3313

    PubMed  Google Scholar 

  57. Hahnloser RHR, Kozhevnikov Aa, Fee MS (2002) An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419(6902): 65–70

    CAS  PubMed  Google Scholar 

  58. Harris K, Csicsvari J, Hirase H, Dragoi G, Buzsáki G (2003) Organization of cell assemblies in the hippocampus. Nature 424(6948): 552–556

    CAS  PubMed  Google Scholar 

  59. Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, Oxford

  60. Helias M, Rotter S, Gewaltig MO, Diesmann M (2008) Structural plasticity controlled by calcium based correlation detection. Front Comput Neurosci 2(7): 1–21

    Google Scholar 

  61. Henke K (2010) A model for memory systems based processing modes rather than consciousness. Nat Rev Neurosci 11: 523–532

    CAS  PubMed  Google Scholar 

  62. Hertz JA, Krogh AS, Palmer RG (1991) Introduction to the theory of neural computation. Westview, New York

  63. Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10(9): 647–658

    CAS  PubMed  Google Scholar 

  64. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational properties. Proc Natl Acad Sci USA 79: 2554–2558

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Hull CL (1943) Principles of behavior. Appleton Century Crofts, New York

  66. Ishiguro A, Fujii A, Hotz PE (2003) Neuromodulated control of bipedal locomotion using a polymorphic CPG circuit. Adapt Behav 11(1): 7–17

    Google Scholar 

  67. Izhikevich EM (2006) Polychronization: computation with spikes. Neural Comput 18(2): 245–282

    PubMed  Google Scholar 

  68. Izquierdo I, Barros DM, Melloe Souza T, de Souza MM, Izquierdo La, Medina JH (1998) Mechanisms for memory types differ. Nature 393(6686): 635–636

    CAS  PubMed  Google Scholar 

  69. Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667): 78–80

    CAS  PubMed  Google Scholar 

  70. Kater SB, Mattson MP, Guthrie PB (1989) Calcium-induced neuronal degeneration: a normal growth cone regulating signal gone awry (?). Ann NY Acad Sci 568: 252–261

    CAS  PubMed  Google Scholar 

  71. Kilman V, van Rossum MCW, Turrigiano GG (2002) Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABA(A) receptors clustered at neocortical synapses. J Neurosci 22(4): 1328–1337

    CAS  PubMed  Google Scholar 

  72. Knoblauch A, Palm G, Sommer FT (2010) Memory capacities for synaptic and structural plasticity. Neural Comput 22(2): 289–341

    PubMed  Google Scholar 

  73. Kumaran D (2008) Short-term memory and the human hippocampus. J Neurosci 28(15): 3837–3838

    CAS  PubMed  Google Scholar 

  74. Kyllonen PC, Christal RE (1990) Reasoning ability is (little more than) working-memory capacity?. Intelligence 14: 389–433

    Google Scholar 

  75. Lansner A (2009) Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulations. Trends Neurosci 32(3): 178–186

    CAS  PubMed  Google Scholar 

  76. Legenstein R, Pecevski D, Maass W (2008) A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS Comput Biol 4(10): e1000,180

    Google Scholar 

  77. Levy WB, Desmond NL (1985) The rules of elemental synaptic plasticity. In: Levy WB, Anderson JA, Lehmkuhle S (eds) Synaptic modification, neuron selectivity, and nervous system organization, chapt 6. Lawrence Erlbaum, Hillsdale, pp 105–121

  78. Levy WB, Steward O (1983) Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8(4): 791–797

    CAS  PubMed  Google Scholar 

  79. Lisman J (1989) A mechanism for the hebb and the anti-H ebb processes underlying learning and memory. Proc Natl Acad Sci USA 86: 9574–9578

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Lisman J, Spruston N (2005) Postsynaptic depolarization requirements for LTP and LTD: a critique pf spike-timing-dependent plasticity. Nat Neurosci 8(7): 839–841

    CAS  PubMed  Google Scholar 

  81. Lisman J, Spruston N (2010) Questions about STDP as a general model of synaptic plasticity. Front Synapt Neurosci 2:140

    Google Scholar 

  82. Liu X, Ramirez S, PangCB P T Puryear, Govindarajan A, Deisseroth K, Tonegawa S (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484: 381–385

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Lynch GS, Dunwiddie T, Gribkoff V (1977) Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature 266: 737–739

    CAS  PubMed  Google Scholar 

  84. Maass W (2010) Liquid state machines: motivation, theory, and applications. In: Cooper B, Sorbi A (eds) Computability in context: computation and logic in the real world. Imperial College Press, London, pp 275–296

  85. Maass W, Natschläger T, Markram H (2002) Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 14(11): 2531–2560

    PubMed  Google Scholar 

  86. Maass W, Joshi P, Sontag ED (2007) Computational aspects of feedback in neural circuits. PLoS Comput Biol 3(1):e165

    Google Scholar 

  87. Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275(5297): 209–213

    CAS  PubMed  Google Scholar 

  88. Manoonpong P, Kolodziejski C, Wörgötter F, Morimoto J (2012) Combining correlation-based and reward-based learning in neural control for policy improvement. Adv Complex Syst (submitted)

  89. Marinazzo D, Kappen HJ, Gielen SCaM (2007) Input-driven oscillations in networks with excitatory and inhibitory neurons with dynamic synapses. Neural Comput 19(7): 1739–1765

    PubMed  Google Scholar 

  90. Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275: 213–215

    CAS  PubMed  Google Scholar 

  91. Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci USA 95(9): 5323–5328

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Marr D (1970) A theory of neocortex. Proc Roy Soc Lond B 176(1043): 161–234

    CAS  Google Scholar 

  93. Marr D, Series L, Sciences B (1970) A theory for cerebral neocortex. Proc R Soc Lond B 176(1043): 161–234

    CAS  PubMed  Google Scholar 

  94. Martin SJ, Morris R (2002) New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 12(5): 609–636

    CAS  PubMed  Google Scholar 

  95. Martin SJ, Grimwood PD, Morris RGM (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23: 649–711

    CAS  PubMed  Google Scholar 

  96. Mattson MP, Kater SB (1989) Excitatory and inhibitory neurotransmitters in the generation and degeneration of hippocampal neuroarchitecture. Brain Res 478(2): 337–348

    CAS  PubMed  Google Scholar 

  97. Mayford M, Bach ME, Huang YY, Wang L, Hawkins RD, Kandel ER (1996) Control of memory formation through regulated expression of a CaMKII transgene. Science 274(5293): 1678–1683

    CAS  PubMed  Google Scholar 

  98. McClelland JL, McNaughton BL, O’Reilly RC (1995) Why there are complementary learning systems in the hippocampius and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102: 419–457

    CAS  PubMed  Google Scholar 

  99. McGaugh JL (2000) Memory—a century of consolidation. Science 287(5451): 248–251

    CAS  PubMed  Google Scholar 

  100. Mejias JF, Torres J (2009) Maximum memory capacity on neural networks with short-term depression and facilitation. Neural Comput 21(3):851–871, arXiv:0809.2010v1

    Google Scholar 

  101. Mézard M, Nadal JP, Toulouse G (1986) Solvable models of working memories. J Phys 47: 1457–1462

    Google Scholar 

  102. Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63(2): 81–97

    CAS  PubMed  Google Scholar 

  103. Miller GA, Galanter E, Pibram KH (1960) Plans and the structure of behavior. Holt, Rinehart, Winston, New York

  104. Mongillo G, Barak O, Tsodyks M (2008) Synaptic theory of working memory. Science 319(5869): 1543–1546

    CAS  PubMed  Google Scholar 

  105. Morris RG (1989) Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the n-methyl-d-aspartate receptor antagonist ap5. J Neurosci 9: 3040–3057

    CAS  PubMed  Google Scholar 

  106. Morris RGM, Takeuchi T (2012) The imaginary mind of mouse. Science 335: 1455–1456

    CAS  PubMed  Google Scholar 

  107. Mozzachiodi R, Byrne JH (2009) More than synaptic plasticity: role of nonsynaptic plasticity in learning and memory. Trends Neurosci 33(1): 17–26

    PubMed Central  PubMed  Google Scholar 

  108. Nadel L, Moscovitch M (1997) Memory consolidation, retrograde amnesia and the hippocampal complex. Curr Opin Neurobiol 7(2): 217–227

    CAS  PubMed  Google Scholar 

  109. Oja E (1982) A simplified neuron model as a principal component analyzer. J Math Biol 15(3): 267–273

    CAS  PubMed  Google Scholar 

  110. Owen AM (1997) The functional organization of working memory processes within human lateral frontal cortex : the contribution of functional neuroimaging. Neuroscience 9(7): 1329–1339

    CAS  Google Scholar 

  111. Päpper M, Kempter R, Leibold C (2011) Synaptic tagging, evaluation of memories, and the distal reward problem. Learn Mem 18(1): 58–70

    PubMed  Google Scholar 

  112. Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313: 1141–1144

    CAS  PubMed  Google Scholar 

  113. Pavlov PI (1927) Conditioned reflexes. Oxford University Press, London

  114. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32(8): 421–431

    CAS  PubMed  Google Scholar 

  115. Perin R, Berger TK, Markram H (2011) A synaptic organizing principle for cortical neuronal groups. Proc Natl Acad Sci USA 108(13): 5419–5424

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Pitti A, Lungarella M, Kuniyoshi Y (2005) Quantification of emergent behaviors induced by feedback resonance of chaos. In: Recent advances in artificial life, advances in natural computation, Chapt 15. World Scientific, Singapore, pp 199–213

  117. Poirazi P, Mel BW (2001) Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29(3): 779–796

    CAS  PubMed  Google Scholar 

  118. Porr B, Wörgötter F (2003) Isotropic sequence order learning. Neural Comput 15: 831–864

    PubMed  Google Scholar 

  119. Rabinowitch I, Segev I (2006) The endurance and selectivity of spatial patterns of long-term potentiation/depression in dendrites under homeostatic synaptic plasticity. J Neurosci 26(52): 13474–13484

    CAS  PubMed  Google Scholar 

  120. Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol 30: 1138–1168

    CAS  PubMed  Google Scholar 

  121. Redondo R, Morris R (2011) Making memories last: the synaptic tagging and capture hypothesis. Nat Rev Neurosci 12: 17–30

    CAS  PubMed  Google Scholar 

  122. Riedel H, Schild D (1992) The dynamics of Hebbian synapses can be stabilized by a nonlinear decay term. Neural Netw 5: 459–463

    Google Scholar 

  123. Rioult-Pedotti MS, Friedman D, Hess G, Donoghue JP (1998) Strengthening of horizontal cortical connections following skill learning. Nat Neurosci 1(3): 230–234

    CAS  PubMed  Google Scholar 

  124. Rochester N, Holland J, Haibt L, Duda W (1956) Tests on a cell assembly theory of the action of the brain, using a large digital computer. IRE Trans Inf Theory 2: 80–93

    Google Scholar 

  125. Rolls ET (2010) Attractor networks. WIREs Cognit Sci 1: 119–134

    Google Scholar 

  126. Rolls ET, Kesner RP (2006) A computational theory of hippocampal function, and empirical tests of the theory. Prog Neurobiol 79(1): 1–48

    CAS  PubMed  Google Scholar 

  127. Royer S, Paré D (2003) Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature 422: 518–522

    CAS  PubMed  Google Scholar 

  128. Rubin DC, Wenzel AE (1996) One hundred years of forgetting: a quantitative description of retention. Psychol Rev 103(4): 734–760

    Google Scholar 

  129. Shimizu E, Tang YP, Rampon C, Tsien JZ (2000) NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 290(5494): 1170–1174

    CAS  PubMed  Google Scholar 

  130. Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci USA 99: 10,831–10,836

    CAS  Google Scholar 

  131. Shouval HZ, Wang SSH, Wittenberg GM (2010) Spike timing dependent plasticity: a consequence of more fundamental learning rules. Front Comput Neurosci 4:19

    Google Scholar 

  132. Sikström S (2002) Forgetting curves: implications for connectionist models. Cognit Psychol 45(1): 95–152

    PubMed  Google Scholar 

  133. Sjöström P, Turrigiano G, Nelson S (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32: 1149–1164

    PubMed  Google Scholar 

  134. Song S, Miller K, Abbott L (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3: 919–926

    CAS  PubMed  Google Scholar 

  135. Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3(3):e68

    Google Scholar 

  136. Squire LR, Alvarez P (1995) Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr Opin Neurobiol 5(2): 169–177

    CAS  PubMed  Google Scholar 

  137. Steingrube S, Timme M, Wörgötter F, Manoonpong P (2010) Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nat Phys 6(3): 224–230

    CAS  Google Scholar 

  138. Stocker R, Durham WM (2009) Tumbling for stealth. Science 325: 400–402

    PubMed  Google Scholar 

  139. Suri RE, Schultz W (1999) A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task. J Neurosci 91(3): 871–890

    CAS  Google Scholar 

  140. Sutton R, Barto A (1981) Towards a modern theory of adaptive networks: expectation and prediction. Psychol Rev 88: 135–170

    CAS  PubMed  Google Scholar 

  141. Sutton R, Barto A (1998) Reinforcement learning: an introduction. MIT Press, Cambridge

  142. Sutton RS (1988) Learning to predict by the method of temporal differences. Mach Learn 3: 9–44

    Google Scholar 

  143. Szatmáry B, Izhikevich EM (2010) Spike-timing theory of working memory. PLoS Comput Biol 6(8):e1000879

    Google Scholar 

  144. Tetzlaff C, Okujeni S, Egert U, Wörgötter F, Butz M (2010) Self-organized criticality in developing neuronal networks. PLoS Comput Biol 6(12):e1001013

    Google Scholar 

  145. Tetzlaff C, Kolodziejski C, Timme M, Wörgötter F (2011) Synaptic scaling in combination with many generic plasticity mechanisms stabilizes circuit connectivity. Front Comput Neurosci 5:47

    Google Scholar 

  146. Triesch J (2007) Synergies between intrinsic and synaptic plasticity mechanisms. Neural Comput 19(4): 885–909

    PubMed  Google Scholar 

  147. Tsodyks M, Pawelzik K, Markram H (1998) Neural networks with dynamic synapses. Neural Comput 10(4): 821–835

    CAS  PubMed  Google Scholar 

  148. Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5: 97–107

    CAS  PubMed  Google Scholar 

  149. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391(6670): 892–896

    CAS  PubMed  Google Scholar 

  150. Van Ooyen A (1994) Activity-dependent neural network development. Comput Neural Syst 5: 401–423

    Google Scholar 

  151. van Ooyen A (2011) Using theoretical models to analyse neural development. Nat Rev Neurosci 12(6): 311–326

    PubMed  Google Scholar 

  152. Van Rossum MCW, Bi GQ, Turrigiano GG (2000) Stable hebbian learning from spike-timing-dependent plasticity. J Neurosci 20(23): 8812–8821

    CAS  PubMed  Google Scholar 

  153. Vandoorne K, Dierckx W, Schrauwen B, Verstraeten D, Baets R, Bienstman P, Van Campenhout J (2008) Toward optical signal processing using photonic reservoir computing. Opt Express 16(15): 11,182–11,192

    Google Scholar 

  154. Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB (2011) Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput Biol 7(2):e1001066

    Google Scholar 

  155. von der Malsburg C (1973) Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14: 85–100

    PubMed  Google Scholar 

  156. Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W (2011) Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334(6062): 1569–1573

    CAS  PubMed  Google Scholar 

  157. Walker M, Brakefield T, Hobson J, Stickgold R (2003) Dissociable stages of human memory consolidation and reconsolidation. Nature 425: 616–620

    CAS  PubMed  Google Scholar 

  158. Wenner P (2011) Mechanisms of GABAergic homeostatic plasticity. Neural Plast 2011: 489,470

    Google Scholar 

  159. Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313: 1093–1097

    CAS  PubMed  Google Scholar 

  160. Wixted JT, Ebbesen E (1991) On the form of forgetting. Psychol Sci 2: 409–415

    Google Scholar 

  161. Woodin MA, Ganguly K, Poo M (2003) Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl transporter activity. Neuron 39(5): 807–820

    CAS  PubMed  Google Scholar 

  162. Xu T, Yu X, Perlik AJ, Tobin WF, Zweig Ja, Tennant K, Jones T, Zuo Y (2009) Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462(7275): 915–919

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Yang G, Pan F, Gan WB (2009) Stably maintained dendritic spines are associated with lifelong memories. Nature 462(7275): 920–924

    CAS  PubMed  Google Scholar 

  164. Yeung LC, Shouval HZ, Blais BS, Cooper LN (2004) Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. Proc Natl Acad Sci USA 101(41): 14943–14948

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Zamanillo D (1999) Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284(5421): 1805–1811

    CAS  PubMed  Google Scholar 

  166. Zhou Q, Tao HW, Poo MM (2003) Reversal and stabilization of synaptic modifications in a developing visual system. Science 300: 1953–1957

    CAS  PubMed  Google Scholar 

  167. Ziv NE, Ahissar E (2009) New tricks and old spines. Nature 462: 859–861

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christian Tetzlaff.

Additional information

Christian Tetzlaff and Christoph Kolodziejski contributed equally for this study.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Tetzlaff, C., Kolodziejski, C., Markelic, I. et al. Time scales of memory, learning, and plasticity. Biol Cybern 106, 715–726 (2012). https://doi.org/10.1007/s00422-012-0529-z

Download citation

Keywords

  • Working memory
  • Short-term memory
  • Long-term memory
  • Short-term plasticity
  • Long-term plasticity
  • Structural plasticity
  • Time scales