Dynamic primitives of motor behavior

Abstract

We present in outline a theory of sensorimotor control based on dynamic primitives, which we define as attractors. To account for the broad class of human interactive behaviors—especially tool use—we propose three distinct primitives: submovements, oscillations, and mechanical impedances, the latter necessary for interaction with objects. Owing to the fundamental features of the neuromuscular system—most notably, its slow response—we argue that encoding in terms of parameterized primitives may be an essential simplification required for learning, performance, and retention of complex skills. Primitives may simultaneously and sequentially be combined to produce observable forces and motions. This may be achieved by defining a virtual trajectory composed of submovements and/or oscillations interacting with impedances. Identifying primitives requires care: in principle, overlapping submovements would be sufficient to compose all observed movements but biological evidence shows that oscillations are a distinct primitive. Conversely, we suggest that kinematic synergies, frequently discussed as primitives of complex actions, may be an emergent consequence of neuromuscular impedance. To illustrate how these dynamic primitives may account for complex actions, we brieflyreviewthree typesof interactivebehaviors: constrained motion, impact tasks, and manipulation of dynamic objects.

References

  1. Adams RD, Victor M et al (1997) Principles of neurology. McGraw-Hill, New York

    Google Scholar 

  2. Ajemian R, Hogan N (2010) Experimenting with theoretical motor neuroscience. J Mot Behav 42(6): 333–342

    PubMed  Article  Google Scholar 

  3. Atkeson CG, Hollerbach JM (1985) Kinematic features of unrestrained vertical arm movements. J Neurosci 5(9): 2318–2330

    CAS  PubMed  Google Scholar 

  4. Bässler U (1986) On the definition of central pattern generator and its sensory control. Biol Cybern 54: 65–69

    Article  Google Scholar 

  5. Bernstein N (1967) The coordination and regulation of movement. Pergamon Press, London

    Google Scholar 

  6. Berthier N (1996) Learning to reach: a mathematical model. Dev Psychol 32(5): 811–823

    Article  Google Scholar 

  7. Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81: 39–60

    CAS  PubMed  Article  Google Scholar 

  8. Bizzi E, Accornero N et al (1984) Posture control and trajectory formation during arm movement. J Neurosci 4(11): 2738–2744

    CAS  PubMed  Google Scholar 

  9. Boesch C, Boesch H (1990) Tool use and tool making in wild chimpanzees. Folia Primatologica 54: 86–99

    CAS  Article  Google Scholar 

  10. Brown TG (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond Ser B 84(572): 308–319

    Article  Google Scholar 

  11. Brown TG (1914) On the nature of the fundamental activity of the nervous centers; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of evolution of function in the nervous system. J Physiol 48: 18–46

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Burdet E, Milner TE (1998) Quantization of human motions and learning of accurate movements. Biol Cybern 78: 307–318

    CAS  PubMed  Article  Google Scholar 

  13. Burdet E, Osu R et al (2001) The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414: 446–449

    CAS  PubMed  Article  Google Scholar 

  14. Cheung VC, d’Avella A et al (2005) Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. J Neurosci 25(27): 6419–6434

    CAS  PubMed  Article  Google Scholar 

  15. Colgate JE, Hogan N (1988) Robust control of dynamically interacting systems. Int J Control 48(1): 65–88

    Article  Google Scholar 

  16. Crevecoeur F, McIntyre J et al (2010) Movement stability under uncertain internal models of dynamics. J Neurophysiol 104(3): 1301–1313

    CAS  PubMed  Article  Google Scholar 

  17. d’Avella A, Portone A et al (2006) Control of fast-reaching movements by muscle synergy combinations. J Neurosci 26(30): 7791–7810

    PubMed  Article  Google Scholar 

  18. d’Avella A, Saltiel P et al (2003) Combinations of muscles synergies in the construction of a natural motor behavior. Nat Neurosci 6(3):300–308

    Google Scholar 

  19. de Rugy A, Sternad D (2003) Interaction between discrete and rhythmic movements: reaction time and phase of discrete movement initiation during oscillatory movements. Brain Res 994: 160–174

    PubMed  Article  Google Scholar 

  20. de Rugy A, Wei K et al (2003) Actively tracking “passive” stability. Brain Res 982(1): 64–78

    PubMed  Article  Google Scholar 

  21. Degallier S, Ijspeert A (2010) Modeling discrete and rhythmic movements through motor primitives: a review. Biol Cybern 103(4): 319–338

    PubMed  Article  Google Scholar 

  22. Dijkstra TMH, Katsumata H et al (2004) The dialogue between data and model: Passive stability and relaxation behavior in a ball bouncing task. Nonlinear Studies 11(3): 319–344

    Google Scholar 

  23. Dipietro L, Krebs HI et al (2007) Changing motor synergies in chronic stroke. J Neurophysiol 98: 757–768

    CAS  PubMed  Article  Google Scholar 

  24. Dipietro L, Krebs HI et al (2012) Learning, not adaptation, characterizes stroke motor recovery: evidence from kinematic changes induced by robot-assisted therapy in trained and untrained task in the same workspace. IEEE Trans Neural Syst Rehab Eng 20(1): 48–57

    CAS  Article  Google Scholar 

  25. Dominici N, Ivanenko YP et al (2011) Locomotor primitives in newborn babies and their development. Science 334(6058): 997–999

    CAS  PubMed  Article  Google Scholar 

  26. Elliott D, Helsen WF et al (2001) A century later: Woodworth’s (1899) two-component model of goal-directed aiming. Psychol Bull 127(3): 342–357

    CAS  PubMed  Article  Google Scholar 

  27. Feldman AG (1966) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscle. Biophysics 11: 565–578

    Google Scholar 

  28. Feldman AG (1986) Once more on the equilibirium hypothesis (lambda model) for motor control. J Motor Behav 18: 17–54

    CAS  Article  Google Scholar 

  29. Feldman AG, Latash ML (2005) Testing hypotheses and the advancement of science: recent attempts to falsify the equilibrium point hypothesis. Exp Brain Res 161: 91–103

    PubMed  Article  Google Scholar 

  30. Fitzhugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1: 445–466

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  31. Flash T, Henis E (1991) Arm trajectory modifications during reaching towards visual targets. J Cognitive Neurosci 3(3): 220–230

    CAS  Article  Google Scholar 

  32. Flash T, Hochner B (2005) Motor primitives in vertebrates and invertebrates. Curr Opin Neurobiol 15(6): 660–666

    CAS  PubMed  Article  Google Scholar 

  33. Franklin DW, Liaw G et al (2007) Endpoint stiffness of the arm is directionally tuned to instability in the environment. J Neurosci 27: 7705–7716

    CAS  PubMed  Article  Google Scholar 

  34. Gallistel CR (1980) The organization of action: A new synthesis. Lawrence Erlbaum, Hillsdale, NJ

    Google Scholar 

  35. Goldstein H (1980) Classical mechanics. Addison-Wesley

  36. Gomi H, Kawato M (1996) Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement. Science 272: 117–220

    CAS  PubMed  Article  Google Scholar 

  37. Gribble P, Ostry DJ et al (1998) Are complex control signals required for human arm movement?. J Neurophysiol 79: 1409–1424

    CAS  PubMed  Google Scholar 

  38. Grillner S, Wallen P (1985) Central pattern generators for locomotion, with special reference to vertebrates. Annu Rev Neurosci 8(1): 233–261

    CAS  PubMed  Article  Google Scholar 

  39. Hasson CJ, Hogan N et al (2012a) Human control of dynamically complex objects. International Conference on Biomedical Robotics and Biomechatronics (BIOROB 2012). IEEE RAS/EMBS, Rome, Italy

    Google Scholar 

  40. Hasson CJ, Shen T et al (2012b) Energy margins in dynamic object manipulation. J Neurophysiol (in revision)

  41. Hodgson AJ, Hogan N (2000) A model-independent definition of attractor behavior applicable to interactive tasks. IEEE Trans Syst Man Cybern Part C-Appl Rev 30(1): 105–118

    Article  Google Scholar 

  42. Hoffer JA, Andreassen S (1981) Regulation of soleus muscle stiffness in premammillary cats: intrinsic and reflex components. J Neurophysiol 45(2): 267–285

    CAS  PubMed  Google Scholar 

  43. Hogan N (1985) Impedance control: an approach to manipulation. ASME J Dyn Syst Meas Control 107: 1–24

    Article  Google Scholar 

  44. Hogan N (1988) On the stability of manipulators performing contact tasks. IEEE J Robotics Autom 4(6): 677–686

    Article  Google Scholar 

  45. Hogan N (1990) Mechanical impedance of single—and multi-articular systems. Multiple muscle systems: Biomechanics and movement organization. J. Winters and S. Woo. Springer-Verlag, New York, pp 149–164

    Book  Google Scholar 

  46. Hogan N, Buerger SP (2004) Impedance and interaction control. In: Kurfess TR (ed) Robotics and automation handbook. CRC Press, 19–11 to 19–24

  47. Hogan N, Sternad D (2007) On rhythmic and discrete movements: reflections, definitions and implications for motor control. Exp Brain Res 181: 13–30

    PubMed  Article  Google Scholar 

  48. Hunt GR (1996) Manufacture and use of hook-tools by New Caledonian crows. Nature 379: 249–251

    CAS  Article  Google Scholar 

  49. Ivanenko YP, Cappellini G et al (2007) Modular control of limb movements during human locomotion. J Neurosci 27(41): 11149– 11161

    CAS  PubMed  Article  Google Scholar 

  50. Johnson DH (2003) Origins of the equivalent circuit concept: the current-source equivalent. Proc IEEE 91(5): 817–821

    Article  Google Scholar 

  51. Johnson DH (2003) Origins of the equivalent circuit concept: the voltage-source equivalent. Proc IEEE 91(4): 636–640

    Article  Google Scholar 

  52. Johnson-Frey SH (2004) The neural basis of complex tool use in humans. Trends Cognitive Sci 8(2): 71–78

    Article  Google Scholar 

  53. Kandel, ER, Schwartz, JH (eds) et al (2000) Principles of neural science. McGraw-Hill, New York

  54. Kargo WJ, Giszter SF (2008) Individual premotor drive pulses, not time-varying synergies, are the units of adjustment for limb trajectories constructed in spinal cord. J Neurosci 28(10): 2409–2425

    CAS  PubMed  Article  Google Scholar 

  55. Katsumata H, Zatsiorsky V et al (2003) Control of ball-racket interactions in the rhythmic propulsion of elastic and non-elastic balls. Exp Brain Res 149: 17–29

    PubMed  Google Scholar 

  56. Kenward B, Weir AAS et al (2005) Behavioral ecology: tool manufacture by naïve juvenile crows. Nature 433(121)

  57. Krebs HI, Aisen ML et al (1999) Quantization of continuous arm movements in humans with brain injury. Proc Natl Acad Sci USA 96(8): 4645–4649

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  58. Lackner JR, Dizio P (1994) Rapid adaptation to coriolis force perturbations of arm trajectory. J Neurophysiol 72(1): 299–313

    CAS  PubMed  Google Scholar 

  59. Lacquaniti F, Maioli C (1994) Coordinate transformations in the control of cat posture. J Neurophysiol 72(4): 1496–1515

    CAS  PubMed  Google Scholar 

  60. Latash ML (1992) Virtual trajectories, joint stiffness, and changes in natural frequency during single-joint oscillatory movements. Neuroscience 49: 209–220

    CAS  PubMed  Article  Google Scholar 

  61. Latash ML (2008) Synergy. Oxford University Press, Oxford

    Book  Google Scholar 

  62. Latash ML, Gottlieb GL (1992) Virtual trajectories of single-joint movements performed under two basic strategies. Neuroscience 47(2): 357–365

    CAS  PubMed  Article  Google Scholar 

  63. Loeb GE (1995) Control implications of musculoskeletal mechanics. Annu Int Conf IEE-EMBS 17: 1393–1394

    Google Scholar 

  64. Marr D (1982) Vision: A computational approach. Freeman & Company, San Francisco

    Google Scholar 

  65. Matsuoka K (1985) Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol Cybern 52: 367–376

    CAS  PubMed  Article  Google Scholar 

  66. McMahon TA (1984) Muscles, reflexes, and locomotion. Princeton University Press, New Jersey

    Google Scholar 

  67. Meyer DE, Abrams RA et al (1988) Optimality in human motor performance: ideal control of rapid aimed movements. Psychol Rev 95(3):340–370

    Google Scholar 

  68. Mussa-Ivaldi FA, Hogan N (1991) Integrable solutions of kinematic redundancy via impedance control. Int J Robotics Res 10(5): 481–491

    Article  Google Scholar 

  69. Nagumo J, Arimoto S et al (1962) An active pulse transmission line simulating nerve axon. Proc IRE 60: 2061–2070

    Article  Google Scholar 

  70. Nichols TR, Houk JC (1976) Improvement in linearity and regulation of stiffness that results from actions of stretch reflex. J Neurophysiol 39:119–142

    Google Scholar 

  71. Prochazka A, Clarac F et al (2000) What do reflex and voluntary mean? Modern views on an ancient debate. Exp Brain Res 130: 417–432

    CAS  PubMed  Article  Google Scholar 

  72. Rabinovich MI, Varona P et al (2006) Dynamical principles in neuroscience. Rev Modern Phys 78: 1213–1265

    Article  Google Scholar 

  73. Raftery A, Cusumano JP et al (2008) Chaotic frequency scaling in a coupled oscillator model for free rhythmic actions. Neural Comput 20(1): 205–226

    PubMed  Article  Google Scholar 

  74. Rohrer B, Fasoli S et al (2004) Submovements grow larger, fewer, and more blended during stroke recovery. Mot Control 8(4): 472–483

    Google Scholar 

  75. Ronsse R, Sternad D et al (2009) A computational model for rhythmic and discrete movements in uni- and bimanual coordination. Neural Comput 21: 1335–1370

    PubMed Central  PubMed  Article  Google Scholar 

  76. Russell DL (1990) An analysis of constrained motions in manipulation Ph.D., M.I.T.

  77. Sanger TD, Delgado MR et al (2003) Classification and definition of disorders causing hypertonia in childhood. Pediatrics 111(1): e89–e97

    PubMed  Article  Google Scholar 

  78. Schaal S, Kotosaka S et al (2000) Nonlinear dynamical systems as movement primitives. Proceedings of the 1st IEEE-RAS International Conference on Humanoid Robotics (Humanoids 2000), Cambridge, MA

  79. Schaal S, Sternad D et al (2004) Rhythmic arm movement is not discrete. Nat Neurosci 7(10): 1136–1143

    CAS  PubMed  Article  Google Scholar 

  80. Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14(5): 3208–3224

    CAS  PubMed  Google Scholar 

  81. Sherrington CS (1906) The integrative action of the nervous system. Yale University Press, New Haven, CT

    Google Scholar 

  82. Siegler IA, Bardy B et al (2010) Passive vs. active control of rhythmic ball bouncing: The role of visual information. J Exp Psychol Hum Percept Perf 36(3):729–750

    Google Scholar 

  83. Sing GC, Joiner WM et al (2009) Primitives for motor adaptation reflect correlated neural tuning to position and velocity. Neuron 64(4): 575–589

    CAS  PubMed  Article  Google Scholar 

  84. Smith AM (1981) The coactivation of antagonist muscles. Can J Physiol Pharmacol 59(7): 733–747

    CAS  PubMed  Article  Google Scholar 

  85. Soechting JF, Flanders M (2008) Sensorimotor control of contact force. Curr Opin Neurobiol 18: 565–572

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  86. Sternad D (2008) Towards a unified framework for rhythmic and discrete movements: behavioral, modeling and imaging results. In: Fuchs A, Jirsa V (eds) Coordination: neural, behavioral and social dynamics. Jirsa. Springer, New York, pp, pp 105–136

    Google Scholar 

  87. Sternad D, Dean WJ et al (2000a) Interaction of rhythmic and discrete pattern generators in single-joint movements. Hum Mov Sci 19: 627–664

    Article  Google Scholar 

  88. Sternad D, Duarte M et al (2000b) Dynamics of a bouncing ball in human performance. Phys Rev E 63: 011902-011901–011902-011908

    Article  Google Scholar 

  89. Sternad D, Duarte M et al (2001) Bouncing a ball: tuning into dynamic stability. J Exp Psychol Hum Percept Perform 27(5): 1163–1184

    CAS  PubMed  Article  Google Scholar 

  90. Strauss L (1970) Wave generation and shaping. McGraw-Hill, New York

    Google Scholar 

  91. Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Addison-Wesley, Reading, MA

    Google Scholar 

  92. Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nature 407: 742–747

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  93. Toffin D, McIntyre J. et al (2003) Perception and reproduction of force direction in the horizontal plane. J Neurophysiol 90: 3040–3053

    CAS  PubMed  Article  Google Scholar 

  94. Tuller B, Turvey MT et al (1982) The Bernstein perspective: II. The concept of muscle linkage or coordinative structure. In: Kelso JAS (ed) Human motor behavior. Erlbaum, Hillsdale, NJ, pp 253–270

    Google Scholar 

  95. von Hofsten C (1991) Structuring of early reaching movemnets: a longitudinal study. J Mot Behav 23(4):280–292

    Google Scholar 

  96. Wei K, Dijkstra TMH et al (2008) Stability and variability: indicators for passive stability and active control in a rhythmic task. J Neurophysiol 99: 3027–3041

    PubMed  Article  Google Scholar 

  97. Won J, Hogan N (1995) Stability properties of human reaching movements. Exp Brain Res 107(1): 125–136

    CAS  PubMed  Article  Google Scholar 

  98. Woodworth RS (1899) The accuracy of voluntary movement. Psychol Rev Monogr Suppl 3(3): 1–119

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Neville Hogan.

Additional information

This article forms part of a special issue of Biological Cybernetics entitled “Multimodal and Sensorimotor Bionics”.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Hogan, N., Sternad, D. Dynamic primitives of motor behavior. Biol Cybern 106, 727–739 (2012). https://doi.org/10.1007/s00422-012-0527-1

Download citation

Keywords

  • Discrete
  • Submovement
  • Rhythmic
  • Oscillation
  • Impedance
  • Primitive