Coping with flow: behavior, neurophysiology and modeling of the fish lateral line system

Abstract

With the mechanosensory lateral line fish perceive water motions relative to their body surface and local pressure gradients. The lateral line plays an important role in many fish behaviors including the detection and localization of dipole sources and the tracking of prey fish. The sensory units of the lateral line are the neuromasts which are distributed across the surface of the animal. Water motions are received and transduced into neuronal signals by the neuromasts. These signals are conveyed by afferent nerve fibers to the fish brain and processed by lateral line neurons in parts of the brainstem, cerebellum, midbrain, and forebrain. In the cerebellum, midbrain, and forebrain, lateral line information is integrated with sensory information from other modalities. The present review introduces the peripheral morphology of the lateral line, and describes our understanding of lateral line physiology and behavior. It focuses on recent studies that have investigated: how fish behave in unsteady flow; what kind of sensory information is provided by flow; and how fish use and process this information. Finally, it reports new theoretical and biomimetic approaches to understand lateral line function.

This is a preview of subscription content, access via your institution.

References

  1. Aleyev YG (1977) Nekton. Dr W. Junk, The Hague

  2. Allen JM, Blaxter JHS, Denton EJ (1976) The functional anatomy and development of the swimbladder-inner ear-lateral line system in herring and sprat. J Mar Biol Assoc UK 56: 471–486

    Google Scholar 

  3. Baker CF, Montgomery JC, Dennis TE (2002) The sensory basis of olfactory search behavior in banded kokopu (Galaxias fasciatus). J Comp Physiol A 188: 553–560

    Google Scholar 

  4. Bassett DK, Carton AG, Momtgomery JC (2006) Flowing water decreases hydrodynamic signal detection in a fish with an epidermal lateral line system. Mar Fresh Res 57: 611–617

    Google Scholar 

  5. Beckmann M, Erős T, Schmitz A, Bleckmann H (2010) Number and distribution of superficial neuromasts in common European Cypriniform fish and their relationship to habitat preference. Int Rev Hydrobiol 95: 273–285

    Google Scholar 

  6. Blaxter JHS, Denton EJ (1976) Function of the swimbladder-inner ear-lateral line system of herring in the young stages. J Mar Biol Assoc UK 56: 487–502

    Google Scholar 

  7. Blaxter JHS, Fuiman LA (1989) Function of the free neuromasts of marine teleost larvae. In:Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 481–499

  8. Blaxter JHS, Denton EJ, Gray JAB (1981) Acousticolateralis system in clupeid fishes. In:Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. Springer, New York pp. 39–59

  9. Bleckmann H (1988) Prey identification and prey localization in surface-feeding fish and fishing spiders. In:Atema J, Fay RR, Popper AN, Tavolga W (eds) Sensory biology of aquatic animals. Springer, New York, pp 619–641

  10. Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In:Rathmayer W (ed) Progress in Zoology, vol 41. Gustav Fischer, Stuttgart, Jena, New York, pp. 1–115

  11. Bleckmann H (2004) 3-D-orientation with the octavolateralis system. J Physiol Paris 98: 53–65

    PubMed  Google Scholar 

  12. Bleckmann H (2008) Peripheral and central processing of lateral line information. J Comp Physiol A 194: 145–158

    CAS  Google Scholar 

  13. Bleckmann H, Bullock TH (1989) Central physiology of the lateral line system, with special reference to elasmobranchs. In:Coombs Sh, Görner P, Münz H, (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 387–408

  14. Bleckmann H, Münz H (1990) The physiology of lateral line mechanoreceptors in a teleost with multiple trunk lateral lines. Brain Behav Evol 35: 240–250

    CAS  PubMed  Google Scholar 

  15. Bleckmann H, Zelick R (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J Comp Physiol A 172: 115–128

    Google Scholar 

  16. Bleckmann H, Zelick R (2009) Lateral line system of fish. Integr Zool 4: 13–15

    PubMed  Google Scholar 

  17. Bleckmann H, Bullock TH, Jørgensen JM (1987) The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray, Platyrhinoidis triseriata (Elasmobranchii). J Comp Physiol A 161: 67–84

    CAS  PubMed  Google Scholar 

  18. Bleckmann H, Tittel G, Blühbaum-Gronau E (1989a) The lateral line system of surface-feeding fish:anatomy, physiology, and behavior. In:Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 501–526

  19. Bleckmann H, Weiss O, Bullock TH (1989b) Central integration of mechanoreceptive lateral line information in the thornback guitarfish, Platyrhinoidis triseriata (Elasmobranchii). J Comp Physiol A 164: 459–474

    CAS  PubMed  Google Scholar 

  20. Bleckmann H, Breithaupt T, Blickhan R, Tautz J (1991) The time course and frequency content of local flow fields caused by moving fish, frog, and crayfish. J Comp Physiol A 168: 749–757

    CAS  PubMed  Google Scholar 

  21. Bleckmann H, Przybilla A, Klein A, Schmitz A, Kunze S, Brücker C (2012) Station holding in trout:behavior, physiology and hydrodynamics. In:Tropea T, Bleckmann H (eds) Nature-inspired fluid mechanics. Springer, New York, pp 161–177

  22. Blevins RD (1990) Flow induced vibration, 2nd edn. Krieger Publishing Company, Malabar

    Google Scholar 

  23. Blickhan R, Krick C, Zehren D, Nachtigall W (1992) Generation of a vortex chain in the wake of a subundulatory swimmer. Naturwissenschaften 79: 220–221

    Google Scholar 

  24. Braun C, Coombs S (2010) Vibratory sources as compound stimuli for the octavolateralis systems:dissection of specific stimulation channels using multiple behavioral approaches. J Exp Psychol Anim Behav Proc 36: 243–257

    Google Scholar 

  25. Brücker C, Bauer D, Chaves H (2007) Dynamic response of micro-pillar sensors measuring fluctuating wall-shear-stress. Exp Fluids 42: 737–749

    Google Scholar 

  26. Burt de Perera T (2004a) Spatial parameters encoded in the spatial map of the blind Mexican cave fish, Astyanax fasciatus. Anim Behav 68: 291–295

    Google Scholar 

  27. Burtde Perera T (2004b) Fish can encode order in their spatial map. Proc Royal Soc Lond B 271: 2131–2134

    Google Scholar 

  28. Caird DM (1978) A simple cerebellar system:the lateral line lobe of the goldfish. J Comp Physiol A 127: 61–74

    Google Scholar 

  29. Campenhausen CV, Riess I, Weissert R (1981) Detection of stationary objects in the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 143: 369–374

    Google Scholar 

  30. Chagnaud BP, Bleckmann H, Engelmann J (2006) Neural responses of goldfish lateral line afferents to vortex motions. J Exp Biol 209: 327–342

    PubMed  Google Scholar 

  31. Chagnaud PB, Bleckmann H, Hofmann MH (2008a) Lateral line nerve fibres do not code bulk water flow direction in turbulent flow. Zoology 111: 204–217

    PubMed  Google Scholar 

  32. Chagnaud BP, Brücker C, Hofmann M, Bleckmann H (2008b) Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations in nature. J Neurosci 28: 4479–4487

    CAS  PubMed  Google Scholar 

  33. Coombs S (1994) Nearfield detection of dipole sources by the goldfish, Carassius auratus, and mottled sculpin, Cottus bairdi. J Exp Biol 190: 109–129

    CAS  PubMed  Google Scholar 

  34. Coombs S, Janssen J (1990) Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. J Comp Physiol A 167: 557–567

    CAS  PubMed  Google Scholar 

  35. Coombs S, Conley RA (1997a) Dipole source localization by mottled sculpin. II. The role of lateral line excitation patterns. J Comp Physiol A 180: 401–416

    CAS  PubMed  Google Scholar 

  36. Coombs S, Conley RA (1997b) Dipole source localization by mottled sculpin. I. Approach strategies. J Comp Physiol A 180: 387–400

    CAS  PubMed  Google Scholar 

  37. Coombs S, Montgomery JC (1999) The enigmatic lateral line system. In:Fay RR, Popper AN (eds) Comparative hearing:fish and amphibians. Springer handbook of auditory research. Springer, New York, pp 319–362

  38. Coombs S, Patton P (2009) Lateral line stimulation patterns and prey orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi). J Comp Physiol A 195: 279–297

    Google Scholar 

  39. Coombs S, Janssen J, Webb JC (1988) Diversity of lateral line systems:evolutionary and functional considerations. In:Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 553–594

  40. Coombs S, Hastings M, Finneran J (1996) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J Comp Physiol A 178: 359–371

    CAS  PubMed  Google Scholar 

  41. Coombs S, Mogdans J, Halstead M, Montgomery J (1998) Transformation of peripheral inputs by the first-order lateral line brainstem nucleus. J Comp Physiol A 182: 609–626

    Google Scholar 

  42. Ćurčić-Blake B, van Netten SM (2006) Source location encoding in the fish lateral line canal. J Exp Biol 209: 1548–1559

    PubMed  Google Scholar 

  43. Denton EJ, Gray JAP (1989) Some observations on the forces acting on neuromasts in fish lateral line canals. In:Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 229–246

  44. Dijkgraaf S (1963) The functioning and significance of the lateral line organs. Biol Rev Camb Philos Soc 38: 51–106

    CAS  PubMed  Google Scholar 

  45. Elepfandt A (1989) Wave analysis by amphibians. In:Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 527–542

  46. Engelmann J, Hanke W, Mogdans J, Bleckmann H (2000) Hydrodynamic stimuli and the fish lateral line. Nature 408: 51–52

    CAS  PubMed  Google Scholar 

  47. Enger PS, Kalmijn AJ, Sand O (1989) Behavioral identification of lateral line and inner ear function. In:Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 575–587

  48. Fan Z, Chen J, Zou J, Bullen D, Liu C, Delcomyn F (2002) Design and fabrication of artifical lateral line flow sensors. J Micromech Microeng 12: 655–661

    Google Scholar 

  49. Faucherre A, Pujol-Martí J, Kawakami K, López-Schier H (2009) Afferent neurons of the zebrafish lateral line are strict selectors of hair-cell orientation. PLoS ONE 4(2):e4477. doi:10.1371/journal.pone.0004477

  50. Flock Å, Wersäll J (1962) A study of the orientation of sensory hairs of the receptor cells in the lateral line organ of a fish with special reference to the function of the receptors. J Cell Biol 15: 19–27

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Flock Å, Russell IJ (1976) Inhibition by efferent nerve fibres:action on hair cells and afferent synaptic transmission in the lateral line canal organ in the Burbot, Lota lota. J Physiol Land 257: 45–62

    CAS  Google Scholar 

  52. Franosch JM, Sichert AB, Suttner MD, van Hemmen JL (2005) Estimating position and velocity of a submerged moving object by the clawed frog Xenopus and by fish—a cybernetic approach. Biol Cybern 93: 2231–2238

    Google Scholar 

  53. Franosch JM, Hagedorn HJA, Goulet J, Engelmann J, van Hemmen JL (2009) Wake tracking and the detection of vortex rings by the canal lateral line of fish. Phys Rev Lett 103. doi:10.1103/PhysRevLett.103.078102

  54. Frühbeis B (1984) Verhaltensphysiologische Untersuchungen zur Frequenzunterscheidung und Empfindlichkeit durch das Seitenlinienorgan des blinden Höhlenfisches Anoptichthys jordani. Dissertation, University of Mainz

  55. Gardiner JM, Atema J (2007) Sharks need the lateral line to locate odor sources:rheotaxis and eddy chemotaxis. J Exp Biol 210: 1925–1934

    PubMed  Google Scholar 

  56. Görner P (1963) Untersuchungen zur Morphologie und Elektrophysiologie des Seitenlinienorgans vom Krallenfrosch (Xenopus laevis Daudin). J Comp Physiol A 47: 316–338

    Google Scholar 

  57. Görner P, Moller P, Weber W (1984) Lateral-line input and stimulus localization in the African clawed toat Xenopus sp. J Exp Biol 108: 315–328

    Google Scholar 

  58. Goulet J (2008) Information processing in the lateral line system of fish. PhD thesis, Technical University of München

  59. Goulet J, Engelmann J, Chagnaud BP, Franosch JMP, Suttner MD, van Hemmen JL (2008) Object localization through the lateral line system of fish:theory and experiment. J Comp Physiol A 194: 1–17

    Google Scholar 

  60. Gray J (1968) Animal locomotion. Weidenfeld and Nicholsen, London

    Google Scholar 

  61. Große S, Schröder W, Brücker C (2006) Nano-newton drag sensor based on flexible micro-pillars. Meas Sci Technol 17: 2689–2697

    Google Scholar 

  62. Hanke W, Bleckmann H (2004) The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae), and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry. J Exp Biol 207: 1585–1596

    PubMed  Google Scholar 

  63. Hanke W, Brücker C, Bleckmann H (2000) The aging of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203: 1193–1200

    CAS  PubMed  Google Scholar 

  64. Hara TJ, Zielinski BS (2007) Sensory systems neuroscience:fish physiology. Academic Press, New York

    Google Scholar 

  65. Harris GG, van Bergeijk WA (1962) Evidence that lateral line organ responds to near field displacements of sound sources in water. J Acoust Soc Am 34: 1831–1841

    Google Scholar 

  66. Hassan ES (1986) On the discrimination of spatial intervals by the blind cave fish (Anoptichthys jordani). J Comp Physiol A 159: 701–710

    CAS  PubMed  Google Scholar 

  67. Hassan ES (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish Anoptichthys jordani. In:Coombs S, Görner P, Münz H (ed) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 217–228

  68. Hassan ES (1992a) Mathematical description of the stimuli to the lateral line system of fish, derived from a three-dimensional flow field analysis. I. The case of moving in open water and of gliding towards a plane surface. Biol Cybern 66:443–452

    Google Scholar 

  69. Hassan ES (1992b) Mathematical description of the stimuli to the lateral line system of fish, derived from a three-dimensional flow field analysis. II. The case of gliding alongside or above a plane surface. Biol Cybern 66:453–461

    Google Scholar 

  70. Hofer B (1908) Studien über die Hautsinnesorgane der Fische I. Die Funktion der Seitenorgane bei den Fischen. Berkgl Bayerbiol Versuchsstation München 1: 115–168

    Google Scholar 

  71. Janssen J (2000) Toxicity of Co2+:implications for lateral line studies. J Comp Physiol A 186: 957–960

    CAS  PubMed  Google Scholar 

  72. Janssen J (2004) Lateral line sensory ecology. In: von der Emde G, Mogdans J, Kapoor BG (eds) The senses of fishes:adaptations for the reception of natural stimuli. Narosa Publishing House, New Delhi, pp 231–264

    Google Scholar 

  73. Kalmijn AJ (1988) Hyrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 83–130

  74. Kalmijn AJ (1989) Functional evolution of lateral line and inner ear sensory systems. In:Coombs S, Görner P, Münz H (eds) The Mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 187–216

  75. Kanter MJ, Coombs S (2003) Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdi). J Exp Biol 206: 59–70

    PubMed  Google Scholar 

  76. Karlsen HE, Sand O (1987) Selective and reversible blocking of the lateral line in freshwater fish. J Exp Biol 133: 249–262

    Google Scholar 

  77. Kaus S (1987) The effect of aminoglycoside antibiotics on the lateral line organ of Aplocheilus lineatus (Cyprinodontidae). Acto Otolaryngol 103: 291–298

    Google Scholar 

  78. Kirsch JA, Hofmann MH, Mogdans J, Bleckmann H (2002) Response properties of diencephalic neurons to visual, acoustic and hydrodynamic stimulation in the goldfish, Carassius auratus. Zoology 105: 61–70

    PubMed  Google Scholar 

  79. Klein A, Bleckmann H (2011) Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals. Beilstein J Nanotechnol 2: 276–283

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Künzel S, Bleckmann H, Mogdans J (2011) Responses of brainstem lateral line units to different stimulus source locations and vibration directions. J Comp Physiol A 197: 773–787

    Google Scholar 

  81. Kroese ABA, Schellart NAM (1992) Velocity-sensitive and acceleration-sensitive units in the trunk lateral line of the trout. J Neurophysiol 68: 2212–2221

    CAS  PubMed  Google Scholar 

  82. Liao JC (2004) Neuromuscular control of trout swimming in a vortex street:implications for energy economy during the Kármán gait. J Exp Biol 207: 3495–3506

    PubMed  Google Scholar 

  83. Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003a) The Kármán gait:novel body kinematics of rainbow trout swimming in a vortex street. J Exp Biol 206: 1059–1073

    PubMed  Google Scholar 

  84. Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003b) Fish exploiting vortices decrease muscle activity. Science 302: 1566–1569

    CAS  PubMed  Google Scholar 

  85. Matssura S, Ikeda K, Furukawa Z (1971) Effects of streptomycin, kanamycin, quinine, and other drugs on the microphonic potentials of goldfish sacculus. Jpn J Physiol 21: 579–590

    Google Scholar 

  86. McConney ME, Tsukruk VV (2012) Synthetic material for bio-inspired flow-responsive structures. Springer, New York

    Google Scholar 

  87. McCormick CA, Hernandez DV (1996) Connections of the octaval and lateral line nuclei of the medulla in the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish. Brain Behav Evol 47: 113–138

    CAS  PubMed  Google Scholar 

  88. Meyer G, Mogdans J, Bleckmann H (2012) Toral lateral line units of goldfish, Carassius auratus, are sensitive to the position and vibration direction of a vibrating sphere. J Comp Physiol A (online first)

  89. Mogdans J, Bleckmann H (1998) Responses of the goldfish trunk lateral line to moving objects. J Comp Physiol A 182: 659–676

    Google Scholar 

  90. Mogdans J, Bleckmann H (1999) Peripheral lateral line responses to amplitude-modulated sinusoidal wave stimuli. J Comp Physiol A 185: 173–180

    Google Scholar 

  91. Mogdans J, Goenechea L (2000) Responses of medullary lateral line units in the goldfish, Carassius auratus, to sinusoidal and complex wave stimuli. Zoology 102: 227–237

    Google Scholar 

  92. Mogdans J, Geisen S (2009) Responses of the goldfish head lateral line to moving objects. J Comp Physiol A 195: 151–165

    Google Scholar 

  93. Mogdans J, Nauroth IE (2011) The oscar, Astronotus ocellatus, detects and discriminates dipole stimuli with the lateral line system. J Comp Physiol A 197: 959–968

    Google Scholar 

  94. Mogdans J, Bleckmann H, Menger N (1997) Sensitivity of central units in the goldfish, Carassius auratus, to transient hydrodynamic stimuli. Brain Behav Evol 50: 261–283

    CAS  PubMed  Google Scholar 

  95. Mogdans J, wojtenek W, Hanke W (1999) The puzzle of hydrodynamic information processing:how are complex water motions analyzed by the lateral line. Europ J Morphol 37: 195–199

    CAS  Google Scholar 

  96. Moller P (2002) Multimodal sensory integration in weakly electric fish: a behavioral account. J Physiol Paris 96: 547–556

    PubMed  Google Scholar 

  97. Montgomery JC, Coombs S (1992) Physiological characterization of lateral line function in the Antarctic fish, Trematomus bernacchii. Brain Behav Evol 40: 209–216

    CAS  PubMed  Google Scholar 

  98. Montgomery JC, Coombs S, Janssen J (1994) Aspects of structure and function in the anterior lateral line of six species of Antarctic fish of the suborder Notothenioidei. Brain Behav Evol 44: 299–306

    CAS  PubMed  Google Scholar 

  99. Montgomery J, Bodznick D, Halstead M (1996) Hindbrain signal processing in the lateral line system of the dwarf scorpionfish Scorpaena papillosus. J Exp Biol 199: 893–899

    PubMed  Google Scholar 

  100. Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389: 960–963

    CAS  Google Scholar 

  101. Müller HM (1993) Neuronale Verarbeitung von Seitenlinieninformationen im Mittelhirn eines Welses. Dissertation, University of Bielefeld

  102. Müller HM, Fleck A, Bleckmann H (1996) The responses of central octavolateralis cells to moving sources. J Comp Physiol A 179: 455–471

    Google Scholar 

  103. Münz H (1985) Single unit-activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157: 555–568

    Google Scholar 

  104. Nauroth IE, Mogdans J (2009) Goldfish and oscars have comparable responsiveness to dipole stimuli. Naturwi 96: 1432–1904

    Google Scholar 

  105. New JG (2002) Multimodal Integration in the feeding behaviors of predatory teleost fishes. Brain Behav Evol 59: 177–189

    PubMed  Google Scholar 

  106. New JG, Fewkes LA, Khan AN (2001) Strike feeding behavior in the muskellunge, Esox masquinongy:contributions of the lateral line and visual sensory systems. J Exp Biol 204: 1207–1221

    CAS  PubMed  Google Scholar 

  107. New JG, Coombs S, McCormick CA, Oshel PE (1996) Cytoarchitecture of the medial octavolateralis nucleus in the goldfish, Carassius auratus. J Comp Neurol 366: 534–546

    CAS  PubMed  Google Scholar 

  108. Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In:Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 17–78

  109. Pandya S, Yang Y, Jones DL, Engel J, Liu C (2006) Mltisensor processing algorithms for underwater dipole localization and tracking using MEMS artificial lateral-line sensors. EURASIP J Appl Signal Process. doi:10.1155/ASP/2006/76593

  110. Parker GH (1904) The function of the lateral-line organs in fishes. Bull US Bur Fish 24: 185–207

    Google Scholar 

  111. Paul DH, Roberts BL (1977) Studies on a primitive cerebellar cortex. III. The projections of the anterior lateral-line nerve to the lateral-line lobes of the dogfish brain. Proc R Soc Lond B 195: 479–496

    CAS  PubMed  Google Scholar 

  112. Pillapakkam SB, Barbier C, Humphrey JAC, Rüter A, Otto B, Bleckmann H, Hanke W (2007) Experimental and numerical investigation of a fish artificial lateral line canal. In:Friedrich E, Adams NA, Eaton JK, Humphrey JAC, Kasagi N, Leschziner MA (eds) Proceedings of the 5th international symposium on turbulence and shear flow phenomena, vol 3, pp 1017–1022

  113. Plachta D, Hanke W, Bleckmann H (2003) A hydrodynamic topographic map and two hydrodynamic subsystems in a vertebrate brain. J Exp Biol 206: 3479–3486

    PubMed  Google Scholar 

  114. Pohlmann K, Grasso FW, Breithaput T (2001) Tracking wakes:the nocturnal predatory strategy of piscivorous catfish. Proc Natl Acad Sci USA 98: 7371–7374

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Pohlmann K, Atema J, Breithaput T (2004) The importance of the lateral line in nocturnal predation of piscivorous catfish. J Exp Biol 207: 2971–2978

    PubMed  Google Scholar 

  116. Przybilla A, Kunze S, Rudert A, Bleckmann H, Brücker C (2010) Entraining in troit:a behavioral and hydrodynamic analysis. J Exp Biol 213: 2976–2986

    PubMed  Google Scholar 

  117. Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Behav Evol 34: 110–131

    CAS  PubMed  Google Scholar 

  118. Roberts BL, Meredith GE (1989) The efferent system. In:Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 445–459

  119. Rosen MW (1959) Water flow about a swimming fish. US Naval Ordnance Test Station TP 2298, China Lake, CA

  120. Sand O (1981) The lateral-line and sound reception. In:Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 459–480

  121. Sand O, Bleckmann H (2008) Orientation to auditory and lateral line stimuli. In:Webb JF, Popper AN, Fay RR (eds) Fish bioacoustics. Springer handbook of auditory research 32, Springer, New York, pp 183–231

  122. Sand O, Ozawa S, Hagiwara S (1975) Electrical and mechanical stimulation of hair cells in the mudpuppy. J Comp Physiol A 102: 13–26

    Google Scholar 

  123. Satou M, Shiraishi A, Matsushima T, Okumoto N (1991) Vibrational communication during spawning behavior in the hime salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Physiol A 168: 417–428

    Google Scholar 

  124. Schellart NAM, Kroese ABA (2002) Conduction velocity compensation for afferent fiber length in the trunk lateral line of the trout. J Comp Physiol A 188: 561–576

    CAS  Google Scholar 

  125. Sichert AB, Bamler R, van Hemmen JL (2009) Hydrodynamic object recognition:when multipoles count. Phys Rev Lett 102. doi:10.1103/PhysRevLett.102.058104

  126. Song J, Northcutt RG (1991) Morphology, distribution and innervation of the lateral-line receptors of the Florida Gar, Lepisosteus platyrhincus. Brain Behav Evol 37: 10–23

    CAS  PubMed  Google Scholar 

  127. Striedter GF (1991) Auditory, electrosensory, and mechanosensory lateral line pathways through the forebrain in channel catfishes. J Comp Neurol 312: 311–331

    CAS  PubMed  Google Scholar 

  128. Taguchi M, Liao JC (2011) Rainbow trout consume less oxygen in turbulence:the energetics of swimming behaviors at different speeds. J Exp Biol 214: 1428–1436

    PubMed Central  PubMed  Google Scholar 

  129. van Netten SM (2006) Hydrodynamic detection by cupulae in a lateral line canal:functional relations between physics and physiology. Biol Cybern 94: 67–85

    PubMed  Google Scholar 

  130. Vischer HA (1990) The morphology of the lateral line system in three species of Pacific cottoid fishes occupying disparate habitats. Experientia 46: 244–250

    Google Scholar 

  131. Vogel D, Bleckmann H (2001) Behavioral discrimination of moving objects with the lateral line. J Comp Physiol 186: 1107–1117

    CAS  Google Scholar 

  132. Voigt R, Carton AG, Montgomery JC (2000) Responses of anterior lateral line afferent neurones to water flow. J Exp Biol 203: 2495–2502

    CAS  PubMed  Google Scholar 

  133. von Campenhausen C, Riess I, Weissert R (1981) Detection of stationary objects in the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 143: 369–374

    Google Scholar 

  134. von der Emde G, Bleckmann H (1998) Finding food:senses involved in foraging for insect larvae in the electric fish Gnathonemus petersii. J Exp Biol 201: 969–980

    Google Scholar 

  135. von der Emde G, Mogdans J, Kapoor BG (2004) The senses of fish. Adaptations for the reception of natural stimuli. Narosa Publishing House, New Delhi

    Google Scholar 

  136. Webb PW (1998) Entrainment by river chub Nocomis micropogon and smallmouth bass Micropterus dolomieu on cylinders. J Exp Biol 201: 2403–2412

    PubMed  Google Scholar 

  137. Webb JF, Blum SD (1990) A swim bladder-lateral line connection in the butterflyfish genus Chaetodon (Perciformes:Chaetodontidae). Am Zool 30:98

    Google Scholar 

  138. Webb JF, Montgomery JC, Mogdans J (2008) Bioacoustics and the lateral line system of fishes. In:Webb JF, Popper AN, Fay RR (eds) Fish bioacoustics. Springer handbook of auditory research 32, Springer, New York, pp 145–182

  139. Weihs D (1973) Hydromechanics of fish schooling. Nature 241: 290–291

    Google Scholar 

  140. Weissert R, von Campenhausen C (1981) Discrimination between stationary objects by the blind cave fish Anoptichthys jordani. J Comp Physiol A 143: 375–382

    Google Scholar 

  141. Wersäll J, Flock A (1964) Suppression and restauration of the microphonic output from the lateral line organ after local application of streptomycin. Life Sci 3: 1151–1155

    Google Scholar 

  142. Wilson M, Montie EW, Mann KA, Mann DA (2009) Ultrasound detection in the Gulf menhaden requires gas-filled bullae and an intact lateral line. J Exp Biol 212: 3422–3427

    PubMed  Google Scholar 

  143. Wojtenek W, Mogdans J, Bleckmann H (1998) Responses of midbrain lateral line units in the goldfish, Carassius auratus, to moving objects. Zoology 101: 69–82

    Google Scholar 

  144. Wubbels RJ, Kroese ABA, Schellart NAM (1993) Response properties of lateral line and auditory units in the medulla oblongata of the rainbow trout (Oncorhynchus mykiss). J Exp Biol 179: 77–92

    Google Scholar 

  145. Wullimann MF (1996) Die funktionale Anatomie und Phylogenese sensorischer und motorischer Systeme im Zentralnervensystem abgeleiteter Knochenfische (Teleostei, Actinopterygii) Ein vergleichend-neurobiologischer Ansatz. Habilitation thesis, University of Bremen

  146. Yang Y, Chen J, Engel J, Pandya S, Chen N, Tucker C, Coombs S, Jones DL, Liu C (2006) Distant touch hydrodynamic imaging with an artificial lateral line. Proc Natl Acad Sci USA 103: 18891–18895

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Yang Y, Nguyen N, Chen N, Lockwood M, Tucker C, Hu H, Bleckmann H, Liu C, Jones DL (2010) Artificial lateral line with biomimetic neuromasts to emulate fish sensing. Bioinsp Biomim 5. doi:10.1088/1748-3182/5/1/016001

  148. Yang Y, Klein A, Bleckmann H, Liu C (2011) Artificial lateral line canal for hydrodynamic detection. Appl Phys Lett 99:023701. doi:10.1063/1.3610470

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joachim Mogdans.

Additional information

This article forms part of a special issue of Biological Cybernetics entitled “Multimodal and Sensorimotor Bionics”.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mogdans, J., Bleckmann, H. Coping with flow: behavior, neurophysiology and modeling of the fish lateral line system. Biol Cybern 106, 627–642 (2012). https://doi.org/10.1007/s00422-012-0525-3

Download citation

Keywords

  • Mechanoreception
  • Hydrodynamic
  • Dipole
  • Water flow
  • Multimodality