Hebbian mechanisms help explain development of multisensory integration in the superior colliculus: a neural network model

Abstract

The superior colliculus (SC) integrates relevant sensory information (visual, auditory, somatosensory) from several cortical and subcortical structures, to program orientation responses to external events. However, this capacity is not present at birth, and it is acquired only through interactions with cross-modal events during maturation. Mathematical models provide a quantitative framework, valuable in helping to clarify the specific neural mechanisms underlying the maturation of the multisensory integration in the SC. We extended a neural network model of the adult SC (Cuppini et al., Front Integr Neurosci 4:1–15, 2010) to describe the development of this phenomenon starting from an immature state, based on known or suspected anatomy and physiology, in which: (1) AES afferents are present but weak, (2) Responses are driven from non-AES afferents, and (3) The visual inputs have a marginal spatial tuning. Sensory experience was modeled by repeatedly presenting modality-specific and cross-modal stimuli. Synapses in the network were modified by simple Hebbian learning rules. As a consequence of this exposure, (1) Receptive fields shrink and come into spatial register, and (2) SC neurons gained the adult characteristic integrative properties: enhancement, depression, and inverse effectiveness. Importantly, the unique architecture of the model guided the development so that integration became dependent on the relationship between the cortical input and the SC. Manipulations of the statistics of the experience during the development changed the integrative profiles of the neurons, and results matched well with the results of physiological studies.

This is a preview of subscription content, access via your institution.

References

  1. Alvarado JC, Stanford TR, Vaughan JW, Stein BE (2007) Cortex Mediates Multisensory But Not Unisensory Integration in Superior Colliculus. J Neurosci 27: 12775–12786

    CAS  PubMed  Article  Google Scholar 

  2. Alvarado JC, Rowland BA, Stanford TR, Stein BE (2008) A neural network model of multisensory integration also accounts for unisensory integration in superior colliculus. Brain Res 1242: 13–23

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  3. Alvarado JC, Stanford TR, Rowland BA, Vaughan JW, Stein BE (2009) Multisensory Integration in the Superior Colliculus Requires Synergy among Corticocollicular Inputs. J Neurosci 29: 6580–6592

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. Anastasio TJ, Patton PE (2003) A two-stage unsupervised learning algorithm reproduces multisensory enhancement in a neural network model of the corticotectal system. J Neurosci 23: 6713–6727

    CAS  PubMed  Google Scholar 

  5. Anastasio TJ, Patton PE, Belkacem-Boussaid K (2000) Using Bayes rule to model multisensory enhancement in the superior colliculus. Neural Comput 12: 1165–1187

    CAS  PubMed  Article  Google Scholar 

  6. Colonius H, Diederich A (2004) Why aren’t all deep superior colliculus neurons multisensory? A Bayes’ ratio analysis. Cogn Affect Behav Neurosci 4: 344–353

    PubMed  Article  Google Scholar 

  7. Cuppini C, Ursino M, Magosso E, Rowland BA, Stein BE (2010) An emergent model of multisensory integration in superior colliculus neurons. Front Integr Neurosci 4: 1–15

    Google Scholar 

  8. Cuppini C, Stein B, Rowland B, Magosso E, Ursino M (2011) A computational study of multisensory maturation in the superior colliculus (SC). Exp Brain Res 213: 341–349

    PubMed Central  PubMed  Article  Google Scholar 

  9. Fuentes-Santamaria V, Alvarado JC, McHaffie JG, Stein BE (2009) Axon morphologies and convergence patterns of projections from different sensory-specific cortices of the anterior ectosylvian sulcus onto multisensory neurons in the cat superior colliculus. Cereb Cortex 19: 2902–2915

    PubMed Central  PubMed  Article  Google Scholar 

  10. Holmes NP, Spence C (2005) Multisensory integration: space, time and superadditivity. Curr Biol 15: R762–R764

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  11. Jiang W, Wallace MT, Jiang H, Vaughan JW, Stein BE (2001) Two cortical areas mediate multisensory integration in superior colliculus neurons. J Neurophysiol 85: 506–522

    CAS  PubMed  Google Scholar 

  12. Jiang W, Jiang H, Stein BE (2002) Two corticotectal areas facilitate multisensory orientation behavior. J Cogn Neurosci 14: 1240–1255

    PubMed  Article  Google Scholar 

  13. Jiang W, Jiang H, Stein BE (2006) Neonatal cortical ablation disrupts multisensory development in superior colliculus. J Neurophysiol 95: 1380–1396

    PubMed Central  PubMed  Article  Google Scholar 

  14. Jiang W, Jiang H, Rowland BA, Stein BE (2007) Multisensory orientation behavior is disrupted by neonatal cortical ablation. J Neurophysiol 97: 557–562

    PubMed  Article  Google Scholar 

  15. Kadunce DC, Vaughan JW, Wallace MT, Benedek G, Stein BE (1997) Mechanisms of within- and cross-modality suppression in the superior colliculus. J Neurophysiol 78: 2834–2847

    CAS  PubMed  Google Scholar 

  16. Kadunce DC, Vaughan JW, Wallace MT, Stein BE (2001) The influence of visual and auditory receptive field organization on multisensory integration in the superior colliculus. Exp Brain Res 139: 303–310

    CAS  PubMed  Article  Google Scholar 

  17. Koch C (1998) Biophysics of computation: information processing in single neurons. Oxford University Press, New York

    Google Scholar 

  18. Magosso E, Cuppini C, Serino A, Di Pellegrino G, Ursino M (2008) A theoretical study of multisensory integration in the superior colliculus by a neural network model. Neural Netw 21: 817–829

    PubMed  Article  Google Scholar 

  19. Maruff P, Yucel M, Danckert J, Stuart G, Currie J (1999) Facilitation and inhibition arising from the exogenous orienting of covert attention depends on the temporal properties of spatial cues and targets. Neuropsychologia 37: 731–744

    CAS  PubMed  Article  Google Scholar 

  20. Meredith MA, Stein BE (1986) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol 56: 640–662

    CAS  PubMed  Google Scholar 

  21. Meredith MA, Nemitz JW, Stein BE (1987) Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J Neurosci 7: 3215–3229

    CAS  PubMed  Google Scholar 

  22. Meredith MA, Stein BE (1996) Spatial determinants of multisensory integration in cat superior colliculus neurons. J Neurophysiol 75: 1843–1857

    CAS  PubMed  Google Scholar 

  23. Ohshiro T, Angelaki DE, DeAngelis GC (2011) A normalization model of multisensory integration. Nat Neurosci 14: 775–782

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. Patton PE, Anastasio TJ (2003) Modelling cross-modal enhancement and modality-specific suppression in multisensory neurons. Neural Comput 15: 783–810

    PubMed  Article  Google Scholar 

  25. Patton PE, Belkacem-Boussaid K, Anastasio TJ (2002) Multimodality in the superior colliculus: an information theoretic analysis. Brain Res Cogn Brain Res 14: 10–19

    PubMed  Article  Google Scholar 

  26. Rowland BA, Stanford TR, Stein BE (2007) A model of the neural mechanisms underlying multisensory integration in the superior colliculus. Perception 36: 1431–1443

    PubMed  Article  Google Scholar 

  27. Stein BE, Meredith MA (1990) Multisensory integration. Neural and behavioral solutions for dealing with stimuli from different sensory modalities. Ann N Y Acad Sci 608: 51–70

    CAS  PubMed  Article  Google Scholar 

  28. Stein BE, Meredith MA (1993) The merging of the senses. MIT Press, Cambridge, MA

    Google Scholar 

  29. Stein BE, Labos E, Kruger L (1973a) Sequence of changes in properties of neurons of superior colliculus of the kitten during maturation. J Neurophysiol 36: 667–679

    CAS  PubMed  Google Scholar 

  30. Stein BE, Labos E, Kruger L (1973b) Determinants of response latency in neurons of superior colliculus in kittens. J Neurophysiol 36: 680–689

    CAS  PubMed  Google Scholar 

  31. Ursino M, Cuppini C, Magosso E, Serino A, Di Pellegrino G (2009) Multisensory integration in the superior colliculus: a neural network model. J Comput Neurosci 26: 55–73

    PubMed  Article  Google Scholar 

  32. Wallace MT, Stein BE (1994) Cross-modal synthesis in the midbrain depends on input from cortex. J Neurophysiol 71: 429–432

    CAS  PubMed  Google Scholar 

  33. Wallace MT, Stein BE (1997) Development of multisensory neurons and multisensory integration in cat superior colliculus. J Neurosci 17: 2429–2444

    CAS  PubMed  Google Scholar 

  34. Wallace MT, Stein BE (2000) Onset of cross-modal synthesis in the neonatal superior colliculus is gated by the development of cortical influences. J Neurophysiol 83: 3578–3582

    CAS  PubMed  Google Scholar 

  35. Wallace MT, Stein BE (2001) Sensory and multisensory responses in the newborn monkey superior colliculus. J Neurosci 21: 8886–8894

    CAS  PubMed  Google Scholar 

  36. Wallace MT, Stein BE (2007) Early experience determines how the senses will interact. J Neurophysiol 97: 921–926

    PubMed  Article  Google Scholar 

  37. Wallace MT, Perrault TJ Jr, Hairston WD, Stein BE (2004) Visual experience is necessary for the development of multisensory integration. J Neurosci 24: 9580–9584

    CAS  PubMed  Article  Google Scholar 

  38. Wallace MT, Carriere BN, Perrault TJ Jr, Vaughan JW, Stein BE (2006) The development of cortical multisensory integration. J Neurosci 26: 11844–11849

    CAS  PubMed  Article  Google Scholar 

  39. Yu L, Rowland BA, Stein BE (2010) Initiating the development of multisensory integration by manipulating sensory experience. J Neurosci 30: 4904–4913

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Cuppini.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cuppini, C., Magosso, E., Rowland, B. et al. Hebbian mechanisms help explain development of multisensory integration in the superior colliculus: a neural network model. Biol Cybern 106, 691–713 (2012). https://doi.org/10.1007/s00422-012-0511-9

Download citation

Keywords

  • Visual-acoustic neurons
  • Anterior ectosylvian sulcus
  • Enhancement
  • Hebb rule Learning mechanisms
  • Inverse effectiveness principle
  • Neural network modeling