Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Biological Cybernetics
  3. Article
A CORF computational model of a simple cell that relies on LGN input outperforms the Gabor function model
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Application of the center–surround mechanism to contour detection

21 May 2019

Yi-Jun Cao, Chuan Lin, … Hao-Jun Zhao

A bio-inspired contour detection model using multiple cues inhibition in primary visual cortex

17 February 2022

Chuan Lin, Ze-Qi Wen, … Yong-Cai Pan

A contour perception model that simulates the complex connection pattern of the visual cortex

21 November 2022

Zhefei Cai & Yingle Fan

Contour detection based on binocular parallax perception mechanism

21 February 2022

Chujie Wei, Tao Fang, … Qingshan She

Salient contour detection on the basis of the mechanism of bilateral asymmetric receptive fields

07 May 2020

Tao Fang, Yingle Fan & Wei Wu

A sub-Riemannian model of the visual cortex with frequency and phase

29 July 2020

E. Baspinar, A. Sarti & G. Citti

Primate vision: a single layer perception

16 March 2021

Satyabrat Malla Bujar Baruah, Deepsikha Nandi, … Soumik Roy

Biological modeling of human visual system for object recognition using GLoP filters and sparse coding on multi-manifolds

06 April 2018

Limiao Deng, Yanjiang Wang, … Yujuan Qi

Contour detection based on the interactive response and fusion model of bilateral attention pathways

12 January 2022

Yanan Xu & Yingle Fan

Download PDF
  • Original Paper
  • Open Access
  • Published: 18 April 2012

A CORF computational model of a simple cell that relies on LGN input outperforms the Gabor function model

  • George Azzopardi1 &
  • Nicolai Petkov1 

Biological Cybernetics volume 106, pages 177–189 (2012)Cite this article

  • 3136 Accesses

  • 79 Citations

  • 1 Altmetric

  • Metrics details

Abstract

Simple cells in primary visual cortex are believed to extract local contour information from a visual scene. The 2D Gabor function (GF) model has gained particular popularity as a computational model of a simple cell. However, it short-cuts the LGN, it cannot reproduce a number of properties of real simple cells, and its effectiveness in contour detection tasks has never been compared with the effectiveness of alternative models. We propose a computational model that uses as afferent inputs the responses of model LGN cells with center–surround receptive fields (RFs) and we refer to it as a Combination of Receptive Fields (CORF) model. We use shifted gratings as test stimuli and simulated reverse correlation to explore the nature of the proposed model. We study its behavior regarding the effect of contrast on its response and orientation bandwidth as well as the effect of an orthogonal mask on the response to an optimally oriented stimulus. We also evaluate and compare the performances of the CORF and GF models regarding contour detection, using two public data sets of images of natural scenes with associated contour ground truths. The RF map of the proposed CORF model, determined with simulated reverse correlation, can be divided in elongated excitatory and inhibitory regions typical of simple cells. The modulated response to shifted gratings that this model shows is also characteristic of a simple cell. Furthermore, the CORF model exhibits cross orientation suppression, contrast invariant orientation tuning and response saturation. These properties are observed in real simple cells, but are not possessed by the GF model. The proposed CORF model outperforms the GF model in contour detection with high statistical confidence (RuG data set: p < 10−4, and Berkeley data set: p < 10−4). The proposed CORF model is more realistic than the GF model and is more effective in contour detection, which is assumed to be the primary biological role of simple cells.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Albrecht DG, De Valois RL, Thorell LG (1980) Visual cortical-neurons—are bars or gratings the optimal stimuli. Science 207(4426): 88–90

    Article  PubMed  CAS  Google Scholar 

  • Andrews BW, Pollen DA (1979) Relationship between spatial-frequency selectivity and receptive-field profile of simple cells. J Physiol 287: 163–176

    PubMed  CAS  Google Scholar 

  • Azzopardi G, Petkov N (2012) Trainable COSFIRE filters for keypoint detection and pattern recognition. IEEE Trans Pattern Anal Mach Intell (to appear)

  • Canny J (1986) A computational approach to edge-detection. IEEE Trans Pattern Anal Mach Intell 8(6): 679–698

    Article  PubMed  CAS  Google Scholar 

  • Chung S, Ferster D (1998) Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression. Neuron 20(6): 1177–1189

    Article  PubMed  CAS  Google Scholar 

  • Croner LJ, Kaplan E (1995) Receptive-fields of P-ganglion and M-ganglion cells across the primate retina. Vis Res 35(1): 7–24

    Article  PubMed  CAS  Google Scholar 

  • Daugman JG (1985) Uncertainty relation for resolution in space, spatial-frequency, and orientation optimized by two-dimensional visual cortical filters. J Opt Soc Am A 2(7): 1160–1169

    Article  PubMed  CAS  Google Scholar 

  • de Boer R, Kuyper P (1968) Triggered correlation. IEEE Trans Bio-med Eng 15(3): 169–179

    Article  Google Scholar 

  • De Valois RL, Albrecht DG, Thorell LG (1978) Cortical cells: bar and edge detectors, or spatial frequency filters? In: Cool SJ, Smith I E L (eds) Frontiers in visual science, Springer-Verlag, Berlin, West Germany pp 544–556

  • De Valois KK, De Valois RL, Yund EW (1979) Responses of striate cortex cells to grating and checkerboard patterns. J Physiol 291: 483–505

    PubMed  CAS  Google Scholar 

  • De Valois RL, Yund EW, Hepler N (1982) The orientation and direction selectivity of cells in macaque visual-cortex. Vis Res 22(5): 531–544

    Article  PubMed  CAS  Google Scholar 

  • DeAngelis GC, Ohzawa I, Freeman RD (1995) Receptive-field dynamics in the central visual pathways. Trends Neurosci 18(10): 451–458

    Article  PubMed  CAS  Google Scholar 

  • DuBuf JMH (1993) Responses of simple cells—events, interferences, and ambiguities. Biol Cybernet 68(4): 321–333

    Article  Google Scholar 

  • Ferster D, Chung S, Wheat H (1996) Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380(6571): 249–252

    Article  PubMed  CAS  Google Scholar 

  • Finn IM, Priebe NJ, Ferster D (2007) The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron 54(1): 137–152

    Article  PubMed  CAS  Google Scholar 

  • Gabor D (1946) Theory of communication. J Inst Electr Eng 93: 429–457

    Google Scholar 

  • Glezer VD, Tsherbach TA, Gauselman VE, Bondarko VM (1980) Linear and non-linear properties of simple and complex receptive-fields in area-17 of the cat visual-cortex—a model of the field. Biological Cybernetics 37(4): 195–208

    Article  PubMed  CAS  Google Scholar 

  • Grigorescu C, Petkov N, Westenberg MA (2004) Contour and boundary detection improved by surround suppression of texture edges. Image Vis Comput 22(8): 609–622

    Article  Google Scholar 

  • Grigorescu C, Petkov N, Westenberg MA (2003) Contour detection based on nonclassical receptive field inhibition. IEEE Trans Image Process 12(7): 729–739

    Article  PubMed  Google Scholar 

  • Heitger F (1995) Feature detection using suppression and enhancement. Communication Technology Laboratory, Swiss Federal Institute of Technology, Lausanne, Technical Report TR-163

  • Hubel DH (1982) Exploration of the primary visual-cortex, 1955–78. Nature 299(5883): 515–524

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in cats visual cortex. J Physiol 160(1):106–154

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1974) Sequence regularity and geometry of orientation columns in monkey striate cortex. J Comp Neurol 158(3): 267–294

    Article  PubMed  CAS  Google Scholar 

  • Irvin GE, Casagrande VA, Norton TT (1993) Center surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus. Vis Neurosci 10(2): 363–373

    Article  PubMed  CAS  Google Scholar 

  • Jones JP, Palmer LA (1987) An evaluation of the two-dimensional gabor filter model of simple receptive-fields in cat striate cortex. J Neurophysiol 58(6): 1233–1258

    PubMed  CAS  Google Scholar 

  • Kovesi P (1999) Image features from phase congruency. Videre 1(3)

  • Kulikowski JJ, Bishop PO (1981) Fourier-analysis and spatial representation in the visual-cortex. Experientia 37(2): 160–163

    Article  PubMed  CAS  Google Scholar 

  • Macleod IDG, Rosenfeld A (1974) Visibility of gratings—spatial frequency channels or bar-detecting units. Vis Res 14(10): 909–915

    Article  PubMed  CAS  Google Scholar 

  • Maffei L, Morrone C, Pirchio M, Sandini G (1979) Responses of visual cortical-cells to periodic and non-periodic stimuli. J Physiol 296: 27–47

    PubMed  CAS  Google Scholar 

  • Marcelja S (1980) Mathematical-description of the responses of simple cortical-cells. J Opt Soc Am 70(11): 1297–1300

    Article  PubMed  CAS  Google Scholar 

  • Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th international conference computer vision, vol 2, pp 416–423

  • Martin DR, Fowlkes CC, Malik J (2004) Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans Pattern Anal Mach Intell 26(5): 530–549

    Article  PubMed  Google Scholar 

  • Mehrotra R, Namuduri KR, Ranganathan N (1992) Gabor filter-based edge-detection. Pattern Recogn 25(12): 1479–1494

    Article  Google Scholar 

  • Morrone MC, Burr DC (1988) Feature detection in human-vision—a phase-dependent energy-model. Proc R Soc Lond B 235(1280): 221–245

    Article  PubMed  CAS  Google Scholar 

  • Morrone MC, Owens RA (1987) Feature detection from local energy. Pattern Recogn Lett 6(5): 303–313

    Article  Google Scholar 

  • Movshon JA, Thompson ID, Tolhurst DJ (1978a) Receptive-field organization of complex cells in cats striate cortex. J Physiol 283: 79–99

    PubMed  CAS  Google Scholar 

  • Petkov N (1995) Biologically motivated computationally intensive approaches to image pattern-recognition. Future Gener Comput Syst 11(4–5): 451–465

    Article  Google Scholar 

  • Priebe NJ, Ferster D (2006) Mechanisms underlying cross-orientation suppression in cat visual cortex. Nat Neurosci 9(4): 552–561

    Article  PubMed  CAS  Google Scholar 

  • Reid RC, Alonso JM (1995) Specificity of monosynaptic connections from thalamus to visual-cortex. Nature 378(6554): 281–284

    Article  PubMed  CAS  Google Scholar 

  • Ringach D, Shapley R (2004) Reverse correlation in neurophysiology. Cogn Sci 28(2): 147–166

    Article  Google Scholar 

  • Rodieck RW (1965) Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Res 5(11): 583–601

    Article  PubMed  CAS  Google Scholar 

  • Rosenthaler L, Heitger F, Kubler O, von der Heydt R (1992) Detection of general edges and keypoints. In: Sandini G (ed) Proceedings of the European Conference Computer Vision (ECCV92), pp 78–86

  • Sclar G, Freeman R (1982) Orientation selectivity in the cats striate cortex is invariant with stimulus contrast. Exp Brain Res 46(3): 457–461

    Article  PubMed  CAS  Google Scholar 

  • Sclar G, Maunsell JHR, Lennie P (1990) Coding of image-contrast in central visual pathways of the macaque moneky. Vision Res 30(1): 1–10

    Article  PubMed  CAS  Google Scholar 

  • Shin MC, Goldgof D, Bowyer KW (1998) An objective comparison methodology of edge detection algorithms using a structure from motion task. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1998 (Cat. No.98CB36231), pp 190–195

  • Sonka M, Hlavac V, Boyle R (1999) Image processing, analysis, and machine vision. Brooks/Cole, Pacific Grove

  • Stork DG, Wilson HR (1990) Do gabor functions provide appropriate descriptions of visual cortical receptive-fields. J Opt Soc Am A 7(8): 1362–1373

    Article  PubMed  CAS  Google Scholar 

  • Tyler CW (1978) Selectivity for spatial-frequency and bar width in cat visual-cortex. Vision Res 18(1): 121–122

    Article  PubMed  CAS  Google Scholar 

  • VonDer Heydt R (1987) Approaches to visual cortical function. Rev Physiol Biochem Pharmacol 108: 69–150

    Article  CAS  Google Scholar 

  • Xu XM, Ichida JM, Allison JD, Boyd JD, Bonds AB, Casagrande V (2001) A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus). J Physiol 531(1): 203–218

    Article  PubMed  CAS  Google Scholar 

  • Xu XM, Bonds AB, Casagrande VA (2002) Modeling receptive-field structure of koniocellular, magnocellular, and parvocellular LGN cells in the owl monkey (Aotus trivigatus). Visual Neurosci 19(6): 703–711

    Article  Google Scholar 

  • Zhang YJ (1996) A survey on evaluation methods for image segmentation. Pattern Recogn 29(8): 1335–1346

    Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Authors and Affiliations

  1. Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands

    George Azzopardi & Nicolai Petkov

Authors
  1. George Azzopardi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Nicolai Petkov
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to George Azzopardi.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Azzopardi, G., Petkov, N. A CORF computational model of a simple cell that relies on LGN input outperforms the Gabor function model. Biol Cybern 106, 177–189 (2012). https://doi.org/10.1007/s00422-012-0486-6

Download citation

  • Received: 20 February 2012

  • Accepted: 23 March 2012

  • Published: 18 April 2012

  • Issue Date: March 2012

  • DOI: https://doi.org/10.1007/s00422-012-0486-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Aligned receptive fields
  • Computational model
  • Contour detection
  • Gabor function
  • LGN
  • Simple cell
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.