Skip to main content

Advertisement

Log in

On the effect of scene motion on color constancy

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A  series of experiments with human subjects have shown that color constancy improves when an object moves. It has been hypothesized that this effect is due to some kind of influence of high-level motion processing. We have built a computational model for color perception which replicates the results qualitatively which have been obtained with human subjects. We show that input from high-level motion processing is not required. In our model, the dependence is an effect of eye movement in combination with neural processing. Depending on the type of stimulus used, the eye either tracks the object or the background. When the object moves but is tracked by the observer, the background appears to move when considering the stimulus with respect to eye coordinates. Hence, the retinal input is different for the two conditions leading to a difference in color constancy performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bronstein IN, Semendjajew KA, Musiol G, Mühling H (2001) Taschenbuch der Mathematik, 5th edn. Verlag Harri Deutsch, Thun und Frankfurt/Main

  • Brown PK, Wald G (1964) Visual pigments in single rods and cones of the human retina. Science 144: 45–52

    Article  PubMed  CAS  Google Scholar 

  • Buchsbaum G (1980) A spatial processor model for object colour perception. J Franklin Inst 310(1): 337–350

    Article  Google Scholar 

  • Ebner M (2004) A parallel algorithm for color constancy. J Parallel Distrib Comput 64(1): 79–88

    Article  Google Scholar 

  • Ebner M (2007a) Color constancy. Wiley, Chichester

    Google Scholar 

  • Ebner M (2007b) How does the brain arrive at a color constant descriptor? In: Mele F, Ramella G, Santillo S, Ventriglia F (eds) Proceedings of the 2nd International Symposium on Brain, Vision and Artificial Intelligence, 10–12 October, 2007, Naples, Italy, Springer, Berlin, pp 84–93

  • Ebner M (2009) Color constancy based on local space average color. Mach Vis Appl J 20(5): 283–301

    Article  Google Scholar 

  • Ebner M, Tischler G, Albert J (2007) Integrating color constancy into JPEG2000. IEEE Trans Image Process 16(11): 2697–2706

    Article  PubMed  Google Scholar 

  • Faugeras OD (1979) Digital color image processing within the framework of a human visual model. IEEE Trans Acoust Speech Signal Process ASSP 27(4): 380–393

    Article  Google Scholar 

  • Felleman DJ, Essen DCV (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1: 1–47

    Article  PubMed  CAS  Google Scholar 

  • Funt B, Barnard K, Martin L (1998) Is machine colour constancy good enough? In: Burkhardt H, Neumann B (eds) Fifth European Conference on Computer Vision (ECCV ’98), Freiburg, Germany, Springer-Verlag, Berlin, pp 445–459

  • Helson H (1938) Fundamental problems in color vision. I. the principle governing changes in hue, saturation, and lightness of non-selective samples in chromatic illumination. J Exp Psychol 23(5): 439–476

    Article  Google Scholar 

  • Herault J (1996) A model of colour processing in the retina of vertebrates: From photoreceptors to colour opposition and colour constancy phenomena. Neurocomputing 12: 113–129

    Article  Google Scholar 

  • Hunt RWG (1957) Light energy and brightness sensation. Nature 179: 1026–1027

    Article  PubMed  CAS  Google Scholar 

  • Ilg UJ (1997) Slow eye movements. Prog Neurobiol 53: 293–329

    Article  PubMed  CAS  Google Scholar 

  • International Commission on Illumination (1996) Colorimetry, 2nd edn. Corrected reprint. Tech. Rep. 15.2, International Commission on Illumination

  • Koenderink JJ, van Doorn AJ (1999) The structure of locally orderless images. Int J Comput Vis 31(2/3): 159–168

    Article  Google Scholar 

  • Koenderink JJ, van Doorn AJ (2000) Blur and disorder. J Vis Commun Image Represent 11: 237–244

    Article  Google Scholar 

  • Land EH (1964) The retinex. Am Sci 52: 247–264

    Google Scholar 

  • Land EH (1974) The retinex theory of colour vision. Proc R Inst Great Britain 47: 23–58

    Google Scholar 

  • Land EH (1986) Recent advances in retinex theory. Vision Res 26(1): 7–21

    Article  PubMed  CAS  Google Scholar 

  • Lindner A, Schwarz U, Ilg UJ (2001) Cancellation of self-induced retinal image motion during smooth pursuit eye movements. Vision Res 41: 1685–1694

    Article  PubMed  CAS  Google Scholar 

  • Marks WB, Dobelle WH, MacNichol EF Jr (1964) Visual pigments of single primate cones. Science 143: 1181–1183

    Article  PubMed  CAS  Google Scholar 

  • Werner A (2007) Color constancy improves, when an object moves: High-level motion influences color perception. J Vis 7(14): 1–14

    Article  PubMed  Google Scholar 

  • Zeki S (1993) A vision of the brain. Blackwell Science, Oxford

    Google Scholar 

  • Zeki S, Bartels A (1999) The clinical and functional measurement of cortical (in)activity in the visual brain, with special reference to the two subdivisions (V4 and V4 α) of the human colour centre. Proc R Soc Lond B 354: 1371–1382

    CAS  Google Scholar 

  • Zeki S, Marini L (1998) Three cortical stages of colour processing in the human brain. Brain 121: 1669–1685

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Ebner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebner, M. On the effect of scene motion on color constancy. Biol Cybern 105, 319–330 (2011). https://doi.org/10.1007/s00422-011-0468-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-011-0468-0

Keywords

Navigation