Skip to main content
Log in

Relative spike timing in stochastic oscillator networks of the Hermissenda eye

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The role of relative spike timing on sensory coding and stochastic dynamics of small pulse-coupled oscillator networks is investigated physiologically and mathematically, based on the small biological eye network of the marine invertebrate Hermissenda. Without network interactions, the five inhibitory photoreceptors of the eye network exhibit quasi-regular rhythmic spiking; in contrast, within the active network, they display more irregular spiking but collective network rhythmicity. We investigate the source of this emergent network behavior first analyzing the role of relative input to spike–timing relationships in individual cells. We use a stochastic phase oscillator equation to model photoreceptor spike sequences in response to sequences of inhibitory current pulses. Although spike sequences can be complex and irregular in response to inputs, we show that spike timing is better predicted if relative timing of spikes to inputs is accounted for in the model. Further, we establish that greater noise levels in the model serve to destroy network phase-locked states that induce non-monotonic stimulus rate-coding, as predicted in Butson and Clark (J Neurophysiol 99:146–154, 2008a; J Neurophysiol 99:155–165, 2008b). Hence, rate-coding can function better in noisy spiking cells relative to non-noisy cells. We then study how relative input to spike–timing dynamics of single oscillators contribute to network-level dynamics. Relative timing interactions in the network sharpen the stimulus window that can trigger a spike, affecting stimulus encoding. Also, we derive analytical inter-spike interval distributions of cells in the model network, revealing that irregular Poisson-like spike emission and collective network rhythmicity are emergent properties of network dynamics, consistent with experimental observations. Our theoretical results generate experimental predictions about the nature of spike patterns in the Hermissenda eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott LF, van Vreeswijk CA (1993) Asynchronous states in networks of pulse-coupled oscillators. Phys Rev E 48: 1483

    Article  Google Scholar 

  • Alkon DL, Fuortes MGF (1972) Responses of photoreceptors in Hermissenda. J Gen Phisiol 60: 631–649

    Article  Google Scholar 

  • Amit DJ, Brunel N (1997) Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cerebral Cortex 7(3): 237–252

    Article  CAS  PubMed  Google Scholar 

  • Berman N, Maler L (1998) Inhibition evoked from primary afferents in the electrosensory lateral line lobe of the weakly electric fish (Apteronotus leptorhynchus). J Neurophysiol 80: 3173–3196

    CAS  PubMed  Google Scholar 

  • Blackwell KT (2006) Ionic currents underlying difference in light responses between type A and type B photoreceptors. J Neurophysiol 95: 3060–3072

    Article  CAS  PubMed  Google Scholar 

  • Bressloff P, Coombes S (2000) Dynamics of strongly coupled spiking neurons. Neural Comput 12: 91–129

    Article  CAS  PubMed  Google Scholar 

  • Brown E, Moehlis J, Holmes P (2004) On the phase reduction and response dynamics of neural oscillator populations. Neural Comput 16: 673–715

    Article  PubMed  Google Scholar 

  • Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 11: 1621–1671

    Article  CAS  PubMed  Google Scholar 

  • Brunel N, Hansel D (2006) How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural Comput 18: 1066–1110

    Article  PubMed  Google Scholar 

  • Bryant HL, Segundo JP (1976) Spike initiation by transmembrane current: a white noise analysis. J Physiol 260: 279–314

    CAS  PubMed  Google Scholar 

  • Butson CR, Clark GA (2008a) Random noise paradoxically improves light-intensity encoding in Hermissenda photoreceptor network. J Neurophysiol 99: 146–154

    Article  PubMed  Google Scholar 

  • Butson CR, Clark GA (2008b) Mechanisms of noise-induced improvement in light-intensity encoding in Hermissenda photoreceptor network. J Neurophysiol 99: 155–165

    Article  PubMed  Google Scholar 

  • Chacron MJ, Longtin A, St-Hilaire M, Maler L (2000) Suprathreshold stochastic firing dynamics with memory in P-type electroreceptors. Phys Rev Lett 85: 1576–1579

    Article  CAS  PubMed  Google Scholar 

  • Eakin RM, Westfall JA, Dennis MJ (1967) Fine structure of the eye of a nudibranch mollusc Hermissenda Crassicornis. J Cell Sci 2: 349–358

    CAS  PubMed  Google Scholar 

  • Ermentrout GB, Galán RF, Urban NN (2007) Relating neural dynamics to neural coding. Phys Rev Lett 99: 248103

    Article  PubMed  Google Scholar 

  • Ermentrout GB, Kopell N (1990) Oscillator death in systems of coupled neural oscillators. SIAM J Appl Math 50: 125

    Article  Google Scholar 

  • Ermentrout GB, Saunders D (2006) Phase resetting and coupling of noisy neural oscillators. J Comput Neurosci 20: 179–190

    Article  PubMed  Google Scholar 

  • Fusi S, Mattia M (1999) Collective behavior of networks with linear (VLSI) integrate-and-fire neurons. Neural Comput 11: 633–652

    Article  CAS  PubMed  Google Scholar 

  • Gardner CW (1994) Handbook of stochastic methods. Springer, Berlin

    Google Scholar 

  • Gerstner W (2000) Population dynamics of spiking neurons: fast transients, asynchronous states, and locking. Neural Comput 12: 43–89

    Article  CAS  PubMed  Google Scholar 

  • Glass L, Mackey MC (1988) From clocks to chaos: the rhythms of life. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Jazayeri M, Movshon A (2006) Optimal representation of sensory information by neural populations. Nat Neurosci 9: 690–696

    Article  CAS  PubMed  Google Scholar 

  • Kohn AF, Freitasda Rocha A, Segundo JP (1981) Presynaptic irregularity and pacemaker inhibition. Biol Cybern 41: 5–18

    Article  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Dover Books, New York, NY

    Google Scholar 

  • Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268: 1503–1506

    Article  CAS  PubMed  Google Scholar 

  • Ma JM, Beck JM, Latham PE, Pouget A (2006) Bayesian inference with probabilistic population codes. Nat Neurosci 9: 1432–1438

    Article  CAS  PubMed  Google Scholar 

  • Mar DJ, Chow CC, Gerstner W, Adams RW, Collins JJ (1999) Noise shaping in populations of coupled model neurons. Proc Natl Acad Sci USA 96: 10450–10455

    Article  CAS  PubMed  Google Scholar 

  • Maran SK, Canavier C (2008) Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved. J Comput Neurosci 24: 37–55

    Article  PubMed  Google Scholar 

  • Mo JL, Blackwell KT (2003) Comparisson of Hermissenda type A and type B photoreceptors: response to light as a function of intensity and duration. J Neurosci 23(22): 8020–8028

    CAS  PubMed  Google Scholar 

  • Nesse WH, Borisyuk A, Bressloff PC (2008) Fluctuation-driven rhythmogenesis in an excitatory neuronal network with slow adaptation. J Comput Neurosci 25: 317–333

    Article  PubMed  Google Scholar 

  • Nesse WH, Clark GA, Bressloff PC (2007) Spike patterning of a stochastic phase model neuron given periodic inhibition. Phys Rev E 75: 031912

    Article  Google Scholar 

  • Oh M, Matveev V (2009) Loss of phase-locking in non-weakly coupled inhibitory networks of type-I model neurons. J Comput Neurosci 26(2): 303–320

    Article  PubMed  Google Scholar 

  • Perkel DH, Schulman JH, Bullock TH, Moore GP, Segundo JP (1964) Pacemaker neurons: effects of regularly spaced synaptic input. Science 145: 61–63

    Article  CAS  PubMed  Google Scholar 

  • Roddey JC, Girish B, Miller JP (2000) assessing the performance of neural encoding models in the presence of noise. J Comput Neurosci 8: 95–112

    Article  CAS  PubMed  Google Scholar 

  • Rubin J, Josić K (2007) The firing of an excitable neuron in the presence of stochastic trains of strong synaptic inputs. Neural Comput 19: 1251–1294

    Article  PubMed  Google Scholar 

  • Schultz LM, Clark GA (1997) GABA-induced synaptic facilitation at type B to A photoreceptor connections in Hermissenda. Brain Res Bull 42: 377–383

    Article  CAS  PubMed  Google Scholar 

  • Steinmetz PN, Manwani A, Koch C, London M, Segev I (2000) Subthreshold voltage noise due to channel fluctuations in active neuronal membranes. J Comput Neurosci 9: 133–148

    Article  CAS  PubMed  Google Scholar 

  • Stevens CF, Zador AM (1998) Input synchrony and the irregular firing of cortical neurons. Nat Neurosci 3: 210–217

    Article  Google Scholar 

  • Wehr M, Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 436: 442–446

    Article  Google Scholar 

  • White JA, Klink R, Alonso A, Kay AR (1998) Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. J Neurophysiol 80: 262–269

    CAS  PubMed  Google Scholar 

  • Yamanobe T, Pakdaman K (2002) Response of a pacemaker neuron model to stochastic pulse trains. Biol Cybern 86: 155–165

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Nesse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesse, W.H., Clark, G.A. Relative spike timing in stochastic oscillator networks of the Hermissenda eye. Biol Cybern 102, 389–412 (2010). https://doi.org/10.1007/s00422-010-0374-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-010-0374-x

Keywords

Navigation