Skip to main content

Advertisement

SpringerLink
  • Log in
Action and behavior: a free-energy formulation
Download PDF
Download PDF
  • Original Paper
  • Open Access
  • Published: 11 February 2010

Action and behavior: a free-energy formulation

  • Karl J. Friston1,
  • Jean Daunizeau1,
  • James Kilner1 &
  • …
  • Stefan J. Kiebel1 

Biological Cybernetics volume 102, pages 227–260 (2010)Cite this article

  • 5370 Accesses

  • 390 Citations

  • 13 Altmetric

  • Metrics details

Abstract

We have previously tried to explain perceptual inference and learning under a free-energy principle that pursues Helmholtz’s agenda to understand the brain in terms of energy minimization. It is fairly easy to show that making inferences about the causes of sensory data can be cast as the minimization of a free-energy bound on the likelihood of sensory inputs, given an internal model of how they were caused. In this article, we consider what would happen if the data themselves were sampled to minimize this bound. It transpires that the ensuing active sampling or inference is mandated by ergodic arguments based on the very existence of adaptive agents. Furthermore, it accounts for many aspects of motor behavior; from retinal stabilization to goal-seeking. In particular, it suggests that motor control can be understood as fulfilling prior expectations about proprioceptive sensations. This formulation can explain why adaptive behavior emerges in biological agents and suggests a simple alternative to optimal control theory. We illustrate these points using simulations of oculomotor control and then apply to same principles to cued and goal-directed movements. In short, the free-energy formulation may provide an alternative perspective on the motor control that places it in an intimate relationship with perception.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

Abbreviations

\({{\bf \Psi}\supseteq \{ \tilde{\bf{x}},{\tilde {\bf v}},{\boldsymbol \theta},{\boldsymbol \gamma}\}}, {\Psi \supseteq \{\tilde {x},\tilde {v},\theta ,\gamma \}}\) :

Unknown causes of sensory input; variables in bold denote true values and those in italics denote variables assumed by the agent or model

\({\tilde{x}(t) = [x, {x}', {x}'',\ldots]^T, \dot{\tilde{x}}(t) = f(\tilde{x}, \tilde{v}, \theta)+\tilde{w}}\) :

Generalised hidden-states that act on an agent. These are time-varying quantities that include all high-order temporal derivatives; they represent a point in generalised coordinates of motion that encodes a path or trajectory

\({\tilde{v}(t) = [v, {v}', {v}'',\ldots]^T}\) :

Generalised forces or causal states that act on hidden states

\({\tilde{s}(t) = g(\tilde{x}, \tilde{v}, \theta) + \tilde{z}}\) :

Generalised sensory states caused by hidden states

\({\theta \supseteq \{\theta_1 ,\theta_2, \ldots\}}\) :

Parameters of the equations of motion and sensory mapping

\({\gamma \supseteq \{\gamma^s, \gamma^x, \gamma^v\}}\) :

Parameters of the precision of random fluctuations \({\Pi(\gamma^i) : i \in s, x, v}\)

\({\tilde{w}(t) = [w, {w}', {w}'', \ldots]^T}\) :

Generalised random fluctuations of the motion of hidden states

\({\tilde{z}(t) = [z, {z}', {z}'', \ldots]^T}\) :

Generalised random fluctuations of sensory states

\({\tilde{n}(t) = [n, {n}', {n}'', \ldots]^T}\) :

Generalised random fluctuations of causal states

\({\Pi^i := \Pi(\gamma^i) = \Sigma(\gamma^i)^{-1}}\) :

Precisions or inverse covariances of generalised random fluctuations

\({{\bf g}(\tilde{\bf{x}}, {\tilde{\bf v}}, {\bf \theta})}\) , \({{\bf f}(\tilde{\bf{x}}, {\tilde{\bf v}}, \tilde{a}, {\bf \theta})}\):

Sensory mapping and equations of motion generating sensory states

\({g(\tilde{x}, \tilde{v}, \theta)}\) , \({f(\tilde{x}, \tilde{v}, \theta)}\):

Sensory mapping and equations of motion modeling sensory states

a(t):

Policy: a scalar function of generalised sensory and internal states

\({p(\tilde{\bf{x}}|m)}\) , \({p(\tilde{s}|m)}\):

Ensemble densities; the density of the hidden and sensory states of agents at equilibrium with their environment.

\({D(q\vert \vert p) = \left\langle{{\rm ln}(q/p)}\right\rangle_q}\) :

Kullback-Leibler divergence or cross-entropy between two densities

\({\langle \rangle_q }\) :

Expectation or mean of under the density q

m :

Model or agent; entailing the form of a generative model

\({H(X) = \left\langle {\ln p(\tilde{\bf{x}}\vert m)}\right\rangle_p H(S)=\left\langle {\ln p(\tilde {s}\vert m)}\right\rangle_p}\) :

Entropy of generalised hidden and sensory states

\({}{-\ln p(\tilde{s}\vert m)}\) :

Surprise or self-information of generalised sensory states

\({F(\tilde{s},\mu ) \ge -\ln p(\tilde{s}\vert m)}\) :

Free-energy bound on surprise

q(Ψ|μ):

Recognition density on causes Ψ with sufficient statistics μ

\({\mu =\{\tilde {\mu}(t),\mu _\theta ,\mu _\gamma \}} \tilde {\mu}=\{\tilde {\mu}_x ,\tilde {\mu}_v \}\) :

Conditional or posterior expectation of the causes Ψ; these are the sufficient statistics of the Gaussian recognition density

\({\tilde{\eta}(t) = [\eta, {\eta}', {\eta}'', \ldots ]^T}\) :

Prior expectation of generalised causal states

\({\xi_i = \Pi_i\tilde{\varepsilon}_i : i \in s, x, v}\) :

Precision-weighted generalised prediction errors

\({{\tilde {\varepsilon}} = \left[ \begin{array}{l} \tilde {\varepsilon}_s =\tilde {s}-g(\mu)\\ \tilde {\varepsilon}_x =D\tilde {\mu}_x -f(\mu)\\ \tilde{\varepsilon}_v =\tilde {\mu}_v -\tilde {\eta}\end{array} \right]}\) :

Generalised prediction error on sensory states, the motion of hidden states and forces or causal states.

References

  • Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275(5297): 220–224

    Article  CAS  PubMed  Google Scholar 

  • Andersen RA (1989) Visual and eye movement factions of the posterior parietal cortex. Annu Rev Neurosci 12: 377–405

    Article  CAS  PubMed  Google Scholar 

  • Anosov DV (2001) Ergodic theory. In Hazewinkel M (ed) Encyclopaedia of mathematics. Kluwer Academic Publishers. ISBN 978-1556080104

  • Ballard DH, Hinton GE, Sejnowski TJ (1983) Parallel visual computation. Nature 306: 21–26

    Article  CAS  PubMed  Google Scholar 

  • Barlow HB (1969) Pattern recognition and the responses of sensory neurons. Ann N Y Acad Sci 156: 872–881

    Article  CAS  PubMed  Google Scholar 

  • Bays PM, Wolpert DM (2007) Computational principles of sensorimotor control that minimize uncertainty and variability. J Physiol 578(Pt 2): 387–396

    CAS  PubMed  Google Scholar 

  • Bell CC, Grant K (1989) Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of mormyrid electric fish. J Neurosci 9(3): 1029–1044

    CAS  PubMed  Google Scholar 

  • Bellman R (1952) On the theory of dynamic programming. Proc Natl Acad Sci USA 38: 716–719

    Article  CAS  PubMed  Google Scholar 

  • Bernard C (1974) Lectures on the phenomena common to animals and plants (trans: Hoff HE, Guillemin R, Guillemin L). Charles C Thomas, Springfield. ISBN 978-0398028572

  • Berret B, Darlot C, Jean F, Pozzo T, Papaxanthis C, Gauthier JP (2008) The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements. PLoS Comput Biol 4(10): e1000194

    Article  PubMed  Google Scholar 

  • Bruyn JL, Mason AH (2009) Temporal coordination during bimanual reach-to-grasp movements: the role of vision. Q J Exp Psychol (Colchester) 5: 1–15

    Google Scholar 

  • Bütefisch CM, Davis BC, Sawaki L, Waldvogel D, Classen J, Kopylev L, Cohen LG (2002) Modulation of use-dependent plasticity by d-amphetamine. Ann Neurol 51(1): 59–68

    Article  PubMed  Google Scholar 

  • Camerer CF (2003) Behavioural studies of strategic thinking in games. Trends Cogn Sci 7(5): 225–231

    Article  PubMed  Google Scholar 

  • Crauel H, Flandoli F (1994) Attractor for random dynamical systems. Probab Theory Relat Fields 100: 365–393

    Article  Google Scholar 

  • Daw ND, Doya K (2006) The computational neurobiology of learning and reward. Curr Opin Neurobiol 16(2): 199–204

    Article  CAS  PubMed  Google Scholar 

  • Dayan P, Hinton GE, Neal RM (1995) The Helmholtz machine. Neural Comput 7: 889–904

    Article  CAS  PubMed  Google Scholar 

  • Deneve S (2008) Bayesian spiking neurons I: inference. Neural Comput 20(1): 91–117

    Article  PubMed  Google Scholar 

  • Diedrichsen J, Dowling N (2009) Bimanual coordination as task-dependent linear control policies. Hum Mov Sci [Epub ahead of print]

  • Diedrichsen J, Verstynen T, Hon A, Zhang Y, Ivry RB (2007) Illusions of force perception: the role of sensori-motor predictions, visual information, and motor errors. J Neurophysiol 97(5): 3305– 3313

    Article  PubMed  Google Scholar 

  • Disney AA, Aoki C, Hawken MJ (2007) Gain modulation by nicotine in macaque v1. Neuron 56(4): 701–713

    Article  CAS  PubMed  Google Scholar 

  • Doya K (2002) Metalearning and neuromodulation. Neural Netw 15(4–6): 495–506

    Article  PubMed  Google Scholar 

  • Evans DJ (2003) A non-equilibrium free-energy theorem for deterministic systems. Mol Phys 101: 1551–1554

    Article  CAS  Google Scholar 

  • Feldman AG (2009) New insights into action-perception coupling. Exp Brain Res 194(1): 39–58

    Article  PubMed  Google Scholar 

  • Feldman AG, Levin MF (1995) The origin and use of positional frames of reference in motor control. Behav Brain Sci 18: 723–806

    Article  Google Scholar 

  • Feynman RP (1972) Statistical mechanics. Benjamin, Reading

    Google Scholar 

  • Fourneret P, Jeannerod M (1998) Limited conscious monitoring of motor performance in normal subjects. Neuropsychologia 36(11): 1133–1140

    Article  CAS  PubMed  Google Scholar 

  • Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 360(1456): 815–836

    Article  PubMed  Google Scholar 

  • Friston K (2008) Hierarchical models in the brain. PLoS Comput Biol 4(11):e1000211. PMID: 18989391

    Google Scholar 

  • Friston K (2010) The free-energy principle: a unified brain theory. Nat Rev Neurosci 11(2): 127–138

    Article  CAS  PubMed  Google Scholar 

  • Friston K, Stephan KE (2007) Free-energy and the brain. Synthese 159: 417–458

    Article  PubMed  Google Scholar 

  • Friston KJ, Tononi G, Reeke GN Jr, Sporns O, Edelman GM (1994) Value-dependent selection in the brain: simulation in a synthetic neural model. Neuroscience 59(2): 229–243

    Article  CAS  PubMed  Google Scholar 

  • Friston K, Kilner J, Harrison L (2006) A free-energy principle for the brain. J Physiol (Paris) 100(1–3): 70–87

    Article  Google Scholar 

  • Friston KJ, Trujillo-Barreto N, Daunizeau J (2008) DEM: a variational treatment of dynamic systems. NeuroImage 41(3): 849–885

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Daunizeau J, Kiebel SJ (2009) Reinforcement learning or active inference?. PLoS One 4(7): e6421

    Article  PubMed  Google Scholar 

  • Gontar V (2000) Entropy principle of extremality as a driving force in the discrete dynamics of complex and living systems. Chaos Solitons Fractals 11: 231–236

    Article  Google Scholar 

  • Gottlieb GL (1998) Rejecting the equilibrium-point hypothesis. Motor Control 2(1): 10–12

    CAS  PubMed  Google Scholar 

  • Grafton ST, Hamilton AF (2007) Evidence for a distributed hierarchy of action representation in the brain. Hum Mov Sci 26(4): 590–616

    Article  PubMed  Google Scholar 

  • Grafton ST, Schmitt P, Van Horn J, Diedrichsen J (2008) Neural substrates of visuomotor learning based on improved feedback control and prediction. Neuroimage 39(3): 1383–1395

    Article  PubMed  Google Scholar 

  • Helmholtz H (1860/1962). Handbuch der physiologischen optik, vol 3 (English trans: Southall JPC, ed). Dover, New York

  • Hinton GE, von Camp D (1993) Keeping neural networks simple by minimizing the description length of weights. In: Proceedings of COLT-93, pp 5–13

  • Huffman KJ, Krubitzer L (2001) Area 3a: topographic organization and cortical connections in marmoset monkeys. Cereb Cortex 11: 849–867

    Article  CAS  PubMed  Google Scholar 

  • Jax SA, Rosenbaum DA (2007) Hand path priming in manual obstacle avoidance: evidence that the dorsal stream does not only control visually guided actions in real time. J Exp Psychol Hum Percept Perform 33(2): 425–441

    Article  PubMed  Google Scholar 

  • Jones DS (1979) Elementary information theory. Clarendon Press, New York

    Google Scholar 

  • Kawato M, Hayakawa H, Inui T (1993) A forward-inverse optics model of reciprocal connections between visual cortical areas. Network 4: 415–422

    Article  Google Scholar 

  • Kersten D, Mamassian P, Yuille A (2004) Object perception as Bayesian inference. Annu Rev Psychol 55: 271–304

    Article  PubMed  Google Scholar 

  • Kiebel SJ, Daunizeau J, Friston KJ (2008) A hierarchy of time-scales and the brain. PLoS Comput Biol 4(11):e1000209. PMID: 19008936

    Google Scholar 

  • Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci 27(12): 712–719

    Article  CAS  PubMed  Google Scholar 

  • Körding KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427(6971): 244–247

    Article  PubMed  Google Scholar 

  • Körding KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L (2007) Causal inference in multisensory perception. PLoS ONE 2(9): e943

    Article  PubMed  Google Scholar 

  • Kreisel SH, Hennerici MG, Bäzner H (2007) Pathophysiology of stroke rehabilitation: the natural course of clinical recovery, use-dependent plasticity and rehabilitative outcome. Cerebrovasc Dis 23(4): 243–255

    Article  PubMed  Google Scholar 

  • Kulvicius T, Porr B, Wörgötter F (2007) Development of receptive fields in a closed-loop behavioral system. Neurocomputing 70: 2046–2049

    Article  Google Scholar 

  • Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. J Opt Soc Am A Opt Image Sci Vis 20: 1434–1448

    Article  PubMed  Google Scholar 

  • Linsker R (1990) Perceptual neural organization: some approaches based on network models and information theory. Annu Rev Neurosci 13: 257–281

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Todorov E (2007) Evidence for the flexible sensorimotor strategies predicted by optimal feedback control. J Neurosci 27(35): 9354–9368

    Article  CAS  PubMed  Google Scholar 

  • Mackay DJC (1992) Information-based objective functions for active data selection. Neural Comput 4: 590–604

    Article  Google Scholar 

  • MacKay DJC (1995) Free-energy minimization algorithm for decoding and cryptoanalysis. Electron Lett 31: 445–447

    Article  Google Scholar 

  • Manoonpong P, Geng T, Kulvicius T, Porr B, Wörgötter F (2007) Adaptive, fast walking in a biped robot under neuronal control and learning. PLoS Comput Biol 3(7): e134

    Article  PubMed  Google Scholar 

  • Maturana HR, Varela F (1972) De máquinas y seres vivos. Editorial Universitaria, Santiago. English version: “Autopoiesis: the organization of the living,” in Maturana HR, Varela FG (1980) Autopoiesis and cognition. Reidel, Dordrecht

  • Montague PR, Dayan P, Person C, Sejnowski TJ (1995) Bee foraging in uncertain environments using predictive Hebbian learning. Nature 377(6551): 725–728

    Article  CAS  PubMed  Google Scholar 

  • Mumford D (1992) On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biol Cybern 66: 241–251

    Article  CAS  PubMed  Google Scholar 

  • Mussa Ivaldi FA, Morasso P, Zaccaria R (1988) A distributed model for representing and regularizing motor redundancy. Biol Cybern 60(1): 1–16

    CAS  PubMed  Google Scholar 

  • Nakano E, Imamizu H, Osu R, Uno Y, Gomi H, Yoshioka T, Kawato M (1999) Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. J Neurophysiol 81(5): 2140–2155

    CAS  PubMed  Google Scholar 

  • Neal RM, Hinton GE (1998) A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan MI (eds) Learning in graphical models. Kluwer Academic Publishers, Dordrecht, pp 355–368

    Google Scholar 

  • Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381: 607–609

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly RC, Noelle DC, Braver TS, Cohen JD (2002) Prefrontal cortex and dynamic categorization tasks: representational organization and neuromodulatory control. Cereb Cortex 12(3): 246–257

    Article  PubMed  Google Scholar 

  • Paulignan Y, MacKenzie C, Marteniuk R, Jeannerod M (1991) Selective perturbation of visual input during prehension movements. 1. The effects of changing object position. Exp Brain Res 83(3): 502–512

    Article  CAS  PubMed  Google Scholar 

  • Paulin MG (2005) Evolution of the cerebellum as a neuronal machine for Bayesian state estimation. J Neural Eng 2(3): S219–S234

    Article  CAS  PubMed  Google Scholar 

  • Porr B, Wörgötter F (2003) Isotropic sequence order learning. Neural Comput 15(4): 831–864

    Article  PubMed  Google Scholar 

  • Prinz AA (2006) Insights from models of rhythmic motor systems. Curr Opin Neurobiol 16(6): 615–620

    Article  CAS  PubMed  Google Scholar 

  • Rao RP, Ballard DH (1998) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive field effects. Nat Neurosci 2: 79–87

    Article  Google Scholar 

  • Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem?. Neuroscience 89(4): 1009–1023

    Article  CAS  PubMed  Google Scholar 

  • Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In: Black AH, Prokasy WF (eds) Classical conditioning II: current research and theory. Appleton Century Crofts, New York, pp 64–99

    Google Scholar 

  • Schaal S, Mohajerian P, Ijspeert A (2007) Dynamics systems vs. optimal control—a unifying view. Prog Brain Res 165: 425–445

    Article  PubMed  Google Scholar 

  • Scheidt RA, Reinkensmeyer DJ, Conditt MA, Rymer WZ, Mussa-Ivaldi FA (2000) Persistence of motor adaptation during constrained, multi-joint, arm movements. J Neurophysiol 84: 853–862

    CAS  PubMed  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275: 1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer F (2003) Brownian agents and active particles: collective dynamics in the natural and social sciences. Springer Series in Synergetics, 1st ed 2003, 2nd printing 2007. ISBN: 978-3-540-73844-2

  • Shadmehr R, Krakauer JW (2008) A computational neuroanatomy for motor control. Exp Brain Res 185(3): 359–381

    Article  PubMed  Google Scholar 

  • Sutton RS (1996) Generalization in reinforcement learning: successful examples using sparse coarse coding. Adv Neural Inf Process Syst 8: 1038–1044

    Google Scholar 

  • Sutton RS, Barto AG (1981) Toward a modern theory of adaptive networks: expectation and prediction. Psychol Rev 88(2): 135– 170

    Article  CAS  PubMed  Google Scholar 

  • Tatler BW, Wade NJ (2003) On nystagmus, saccades, and fixations. Perception 32(2): 167–184

    Article  PubMed  Google Scholar 

  • Todorov E (2006) Linearly-solvable Markov decision problems. In: Scholkopf B et al (eds) Advances in neural information processing systems, vol 19. MIT Press, Cambridge, pp 1369–1376

    Google Scholar 

  • Todorov E, Jordan MI (1998) Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements. J Neurophysiol 80(2): 696–714

    CAS  PubMed  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5(11): 1226–1235

    Article  CAS  PubMed  Google Scholar 

  • Toussaint M (2009) Probabilistic inference as a model of planned behavior. Künstliche Intelligenz Ger Artif Intell J (in press)

  • Tschacher W, Haken H (2007) Intentionality in non-equilibrium systems? The functional aspects of self-organized pattern formation. New Ideas Psychol 25: 1–15

    Article  Google Scholar 

  • Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98(1): 54–62

    Article  PubMed  Google Scholar 

  • Verschure PF, Voegtlin T (1998) A botom up approach towards the acquisition and expression of sequential representations applied to a behaving real-world device: Distributed Adaptive Control III. Neural Netw 11(7–8): 1531–1549

    Article  PubMed  Google Scholar 

  • Verschure PF, Voegtlin T, Douglas RJ (2003) Environmentally mediated synergy between perception and behavior in mobile robots. Nature 425: 620–624

    Article  CAS  PubMed  Google Scholar 

  • Voss M, Ingram JN, Wolpert DM, Haggard P (2008) Mere expectation to move causes attenuation of sensory signals. PLoS ONE 3(8): e2866

    Article  PubMed  Google Scholar 

  • Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn 8: 279–292

    Google Scholar 

  • Wei K, Körding KP (2009) Relevance of error: what drives motor adaptation?. J Neurophysiol 101(2): 655–664

    Article  PubMed  Google Scholar 

  • Wolpert DM, Miall RC (1996) Forward models for physiological motor control. Neural Netw 9(8): 1265–1279

    Article  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269(5232): 1880–1882

    Article  CAS  PubMed  Google Scholar 

  • Wörgötter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17(2): 245–319

    Article  PubMed  Google Scholar 

  • Yu AJ, Dayan P (2005) Uncertainty, neuromodulation and attention. Neuron 46: 681–692

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Neil Burgess and Florentin Wörgötter for very helpful reviews of a previous version of this work.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3BG, UK

    Karl J. Friston, Jean Daunizeau, James Kilner & Stefan J. Kiebel

Authors
  1. Karl J. Friston
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jean Daunizeau
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. James Kilner
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Stefan J. Kiebel
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Karl J. Friston.

Additional information

The free-energy principle is an attempt to explain the structure and function of the brain, starting from the fact that we exist: This fact places constraints on our interactions with the world, which have been studied for years in evolutionary biology and systems theory. However, recent advances in statistical physics and machine learning point to a simple scheme that enables biological systems to comply with these constraints. If one looks at the brain as implementing this scheme (minimizing a free-energy bound on disorder), then many aspects of its anatomy and physiology start to make sense. In this article, we show that free-energy can be reduced by selectively sampling sensory inputs. This leads to adaptive responses and provides a new view of how movement control might work in the brain. The main conclusion is that we only need to have expectations about the sensory consequences of moving in order to elicit movement. This means we that can replace the notion of desired movements with expected movements and understand action in terms of perceptual expectations.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Friston, K.J., Daunizeau, J., Kilner, J. et al. Action and behavior: a free-energy formulation. Biol Cybern 102, 227–260 (2010). https://doi.org/10.1007/s00422-010-0364-z

Download citation

  • Received: 30 October 2009

  • Accepted: 19 January 2010

  • Published: 11 February 2010

  • Issue Date: March 2010

  • DOI: https://doi.org/10.1007/s00422-010-0364-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Computational
  • Motor
  • Control
  • Bayesian
  • Hierarchical
  • Priors
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 89.238.176.4

Not affiliated

Springer Nature

© 2022 Springer Nature Switzerland AG. Part of Springer Nature.