Skip to main content
Log in

The firing statistics of Poisson neuron models driven by slow stimuli

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The coding properties of cells with different types of receptive fields have been studied for decades. ON-type neurons fire in response to positive fluctuations of the time-dependent stimulus, whereas OFF cells are driven by negative stimulus segments. Biphasic cells, in turn, are selective to up/down or down/up stimulus upstrokes. In this article, we explore the way in which different receptive fields affect the firing statistics of Poisson neuron models, when driven with slow stimuli. We find analytical expressions for the time-dependent peri-stimulus time histogram and the inter-spike interval distribution in terms of the incoming signal. Our results enable us to understand the interplay between the intrinsic and extrinsic factors that regulate the statistics of spike trains. The former depend on biophysical neural properties, whereas the latter hinge on the temporal characteristics of the input signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht DG, Hamilton DB (1982) Striate cortex of monkey and cat: contrast response function. J Neurophysiol 48(1): 217–237

    CAS  PubMed  Google Scholar 

  • Albright TD (1984) Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol 52(6): 1106–1130

    CAS  PubMed  Google Scholar 

  • Atick JJ (1992) Could information theory provide an ecological theory of sensory processing?. Network 3: 213–251

    Article  Google Scholar 

  • Aviel Y, Gerstner W (2006) From spiking neurons to rate models: a cascade model as an approximation to spiking neuron models with refractoriness. Phys Rev E 73: 051908/1–10

    Article  CAS  Google Scholar 

  • Benda J, Herz AVM (2003) A universal model for spike-frequency adaptation. Neural Comput 15(11): 2523–2564

    Article  PubMed  Google Scholar 

  • Borghuis BG, Ratliff CP, Smith RG, Sterling P, Balasubramanian V (2008) Design of a neuronal array. J Neurosci 28(12): 3178–3189

    Article  CAS  PubMed  Google Scholar 

  • Brenner N, Bialek W, de van Ruyter Steveninck R (2000) Adaptive rescaling maximizes information transmission. Neuron 26: 695–702

    Article  CAS  PubMed  Google Scholar 

  • De Vries SH, Baylor DA (1997) Mosaic Arrangement of Ganglion Cell Receptive Fields in Rabbit Retina. J Neurophysiol 78: 2048–2060

    CAS  Google Scholar 

  • Doya K (2002) Metalearning and neuromodulation. Neural Netw 15: 495–506

    Article  PubMed  Google Scholar 

  • Ermentrout B (1998) Linearization of f-I curves by adaptation. Neural Comput 10(7): 1721–1729

    Article  CAS  PubMed  Google Scholar 

  • Fontanini A, Bower JM (2006) Slow-waves in the olfactory system: an olfactory perspective on cortical rhythms. Trends Neurosci 29(8): 429–437

    Article  CAS  PubMed  Google Scholar 

  • Gauthier JL, Field GD, Sher A, Greschner M, Shlens J, Litke AM, Chichilnisky EJ (2009) Receptive fields in primate retina are coordinated to sample visual space more uniformly. PLoS Biol 7(4): e1000063

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2(11): 1527–1537

    CAS  PubMed  Google Scholar 

  • Gollisch T, Meister M (2008a) Rapid neural coding in the retina with relative spike latencies. Science 319: 1108–1111

    Article  CAS  PubMed  Google Scholar 

  • Gollisch T, Meister M (2008b) Modeling convergent ON and OFF pathways in the early visual system. Biol Cybern 99: 263–278

    Article  PubMed  Google Scholar 

  • Lesica NA, Grothe B (2008) Efficient temporal processing of naturalistic sounds. PLoS ONE 3(2): e1655

    Article  PubMed  CAS  Google Scholar 

  • Nagel KI, Doupe AJ (2006) Temporal processing and adaptation in the songbird auditory forebrain. Neuron 51: 845–859

    Article  CAS  PubMed  Google Scholar 

  • Rust NC, Schwartz O, Movshon JA, Simoncelli EP (2005) Spatiotemporal elements of macaque V1 receptive fields. Neuron 46: 945–956

    Article  CAS  PubMed  Google Scholar 

  • Saper CB (2000) Brain stem modulation of sensation, movement and consciousness. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 4th edn. McGraw-Hill, New York, pp 889–909

    Google Scholar 

  • Schwartz O, Pillow JW, Rust NC, Simoncelli EP (2006) Spike-triggered neural characterization. J Vis 6: 484–507

    Article  PubMed  Google Scholar 

  • Segev R, Puchalla J, Berry MJII (2006) Functional organization of ganglion cells in the salamander retina. J Neurophysiol 95: 2277–2292

    Article  PubMed  Google Scholar 

  • Tóth K, Freund TF, Miles R (1997) Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum. J Physiol 500(2): 463–474

    PubMed  Google Scholar 

  • Urdapilleta E, Samengo I (2009) Quasistatic approximation of the interspike interval distribution of neurons driven by time-dependent inputs. Phys Rev E 80: 011915/1–7

    Article  CAS  Google Scholar 

  • Vincent BT, Baddeley RJ, Troscianko T, Gilchrist ID (2005) Is the early visual system optimised to be energy efficient?. Netw Comput Neural Syst 16(2/3): 175–190

    Article  Google Scholar 

  • Wilson CJ, Weyrick A, Terman D, Hallworth NE, Bevan MD (2004) A model of reverse spike frequency adaptation and repetitive firing of subthalamic nucleus neurons. J Neurophysiol 91: 1963–1980

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Urdapilleta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urdapilleta, E., Samengo, I. The firing statistics of Poisson neuron models driven by slow stimuli. Biol Cybern 101, 265–277 (2009). https://doi.org/10.1007/s00422-009-0335-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0335-4

Keywords

Navigation