Skip to main content
Log in

Subthreshold activation of spinal motoneurones in the stretch reflex: experimental data and modeling

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Responses of gastrocnemius–soleus motoneurones to stretches of the homonymous muscles were recorded intrasomatically in decerebrate cats; changes of membrane potential (MP) were evoked by smoothed trapezoid stretches of the muscles. Amplitudes of separate excitatory postsynaptic potentials (EPSPs) were defined via differences between values of MP at the end and beginning of the positive derivative waves, which were also used as basic elements in the model of the excitatory postsynaptic currents (EPSCs). EPSCs were assumed to be transformed into EPSPs by low-pass filtering properties of the somatic membrane; parameters of the filtering were firstly defined from analysis of Ia EPSP in the same cell and then were applied in model P m0. The model showed unsatisfactory quality in tracking slow components of MP; to overcome the disadvantage there was proposed model P m1 based on addition to P m0 the difference between two low-pass filtered signals MP and P m0 (the cutoff frequency 10 or 20 Hz). An overestimation of EPSPs’ amplitudes was corrected in model P m2. The mismatch in tracking slow changes of MP was assumed to be connected with summation of a great number of low-amplitude EPSPs generated at distal dendrites; information about waveform of separate EPSPs could disappear in this process. One can speculate that slow components of membrane depolarization at least partly are linked with the persistent inward currents in dendrites; variable and, sometimes, too fast decays in EPSPs seem to reflect inhibitory synaptic influences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bezrukov SM, Vodyanoy I (1994) Noise in biological-membranes and relevant ionic systems. In: Blank M, Vodyanoy I(eds) Biomembrane electrochemistry. Oxford University Press, New York, pp 375–399

    Chapter  Google Scholar 

  • Binder MD (2002) Integration of synaptic and intrinsic dendritic currents in cat spinal motoneurons. Brain Res Rev 40: 1–8

    Article  PubMed  Google Scholar 

  • Binder MD, Powers RK (1999) Synaptic integration in spinal motoneurones. J Physiol (Paris) 93: 71–79

    Article  CAS  Google Scholar 

  • Brizzi L, Ting LH, Zytnicki D (2002) Positive proprioceptive feedback elicited by isometric contractions of ankle flexors on pretibial motoneurons in cats. J Neurophysiol 88(5): 2207–2214

    Article  CAS  PubMed  Google Scholar 

  • Brown AG, Fyffe RE (1981) Direct observation on the contacts made between Ia afferent fibres and alpha-motoneurones in the cat’s lumbosacral spinal cord. J Physiol (Lond) 313: 121–140

    CAS  Google Scholar 

  • Brownstone RM, Gossard J-P, Hultborn H (1994) Voltage-dependent excitation of motoneurons from spinal locomotor centers in the cat. Exp Brain Res 102: 34–44

    Article  CAS  PubMed  Google Scholar 

  • Burke RE (1967) Composite nature of the monosynaptic excitatory postsynaptic potential. J Neurophysiol 30: 1114–1137

    CAS  PubMed  Google Scholar 

  • Burke RE, Fedina L, Lundberg A (1971) Spatial synaptic distribution of recurrent and group Ia inhibitory systems in cat spinal motoneurones. J Physiol (Lond) 214: 305–326

    CAS  Google Scholar 

  • Calvin WH, Stevens CF (1968) Synaptic noise and other sources of randomness in motoneuron interspike intervals. J Neurophysiol 31: 574–587

    CAS  PubMed  Google Scholar 

  • Carlin KP, Jiang Z, Brownstone RM (2000) Characterization of calcium currents in functionally mature mouse spinal motoneurons. Eur J Neurosci 12: 1624–1634

    Article  CAS  PubMed  Google Scholar 

  • Curtis DR, Eccles JC (1959) The time courses of excitatory and inhibitory synaptic actions. J Physiol (Lond) 145: 529–546

    CAS  Google Scholar 

  • DeFelice LJ (1981) Introduction to membrane noise. Plenum Press, New York

    Google Scholar 

  • Destexhe A, Rudolph M, Pare D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4: 739–751

    Article  CAS  PubMed  Google Scholar 

  • Diba K, Jacobson G, Oz Y, Koch C, Segev I, Yarom Y (2002) Characteristics of subthreshold noise in neocortical pyramidal neurons. Soc Neurosci Abstr 28: 312

    Google Scholar 

  • Eccles JC (1961) Membrane time constants of cat motoneurones and time courses of synaptic action. Exp Neurol 4: 1–22

    Article  CAS  PubMed  Google Scholar 

  • Fellous JM, Rudolph M, Destexhe A, Sejnowski TJ (2003) Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience 122: 811–829

    Article  CAS  PubMed  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatique. Physiol Rev 81: 1725–1789

    CAS  PubMed  Google Scholar 

  • Hausser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290: 739–744

    Article  CAS  PubMed  Google Scholar 

  • Heckman CJ, Binder MD (1988) Analysis of effective synaptic currents generated by homonymous Ia afferent fibers in motoneurons of the cat. J Neurophysiol 60: 1946–1966

    CAS  PubMed  Google Scholar 

  • Heckman CJ, Hyngstrom AS, Johnson MD (2008) Active properties of motoneurone dendrites: diffuse descending neuromodulation, focused local inhibition. J Physiol 586: 1225–1231

    Article  CAS  PubMed  Google Scholar 

  • Jack JJB, Noble D, Tsien RW (1975) Electric current flow in excitable cells. Clarendon Press, Oxford

    Google Scholar 

  • Kernell D, Zwaagstra B (1989) Size and remoteness: two relatively independent parameters of dendrites, as studied for spinal motoneurones of the cat. J Physiol 413: 233–254

    CAS  PubMed  Google Scholar 

  • Korogod SM, Kulagina IB, Horcholle-Bossavit G, Gogan P, Tyc-Dumont S (2000) Activity-dependent reconfiguration of the effective dendritic field of motoneurons. J Comp Neurol 422: 18–34

    Article  CAS  PubMed  Google Scholar 

  • Kostyukov AI (1998) Muscle hysteresis and movement control: a theoretical study. Neuroscience 83: 303–320

    Article  CAS  PubMed  Google Scholar 

  • Kostyukov AI (2007) Dynamic properties of the mammalian motor control system. Monograph (in Russian), FADA, Kiev

    Google Scholar 

  • Kostyukov AI, Bugaychenko LA, Kalezic I, Pilyavskii AI, Windhorst U, Djupsjobacka M (2005) Effects in feline gastrocnemius–soleus motoneurones induced by muscle fatigue. Exp Brain Res 163: 284–294

    Article  PubMed  Google Scholar 

  • Kouchtir N, Perrier JF, Zytnicki D, Jami L (1995) Contraction-induced excitation in cat peroneal motoneurons. J Neurophysiol 73: 974–982

    CAS  PubMed  Google Scholar 

  • Lee RH, Kuo JJ, Jiang MC, Heckman CJ (2003) Influence of active dendritic currents on input–output processing in spinal motoneurons in vivo. J Neurophysiol 89: 27–39

    Article  CAS  PubMed  Google Scholar 

  • Mak DO, Webb WW (1997) Conductivity noise in transmembrane ion channels due to ion concentration fluctuations via diffusion. Biophys J 72: 1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Miller JF, Paul KD, Rymer WZ, Heckman CJ (1997) Intrathecal 2-amino-7-phophonohetanoic acid (AP-7) attenuates clasp knife reflex in decerebrate cat. Soc Neurosci Abstr 23: 1039

    Google Scholar 

  • Örnung G, Ragnarson B, Grant G, Ottersen J, Storm-Mathisen J, Ulfhake B (1995) Ia boutons to CCN neurones and motoneurones are enriched with glutamate-like immunoreactivity. Neuroreport 6: 1975–1980

    Article  PubMed  Google Scholar 

  • Örnung G, Ottersen J, Cullheim S, Ulfhake B (1998) Distribution of glutamate-, glycine- and GABA-immunoreactive nerve terminals on dendrites in the cat spinal motor nucleus. Exp Brain Res 118: 517–532

    Article  PubMed  Google Scholar 

  • Perrier JF, D’Incamps BL, Kouchtir-Devanne N, Jami L, Zytnicki D (2000) Effects on peroneal motoneurons of cutaneous afferents activated by mechanical or electrical stimulations. J Neurophysiol 83: 3209–3216

    CAS  PubMed  Google Scholar 

  • Powers RK, Binder MD (2000) Summation of effective synaptic currents and firing rate modulation in cat spinal motoneurons. J Neurophysiol 83: 483–500

    CAS  PubMed  Google Scholar 

  • Prather JF, Powers RK, Cope TC (2001) Amplification and linear summation of synaptic effects on motoneuron firing rate. J Neurophysiol 85: 43–53

    CAS  PubMed  Google Scholar 

  • Rall W (1960) Membrane potential transients and membrane time constants of motoneurons. Exp Neurol 2: 503–532

    Article  CAS  PubMed  Google Scholar 

  • Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol 30: 1138–1168

    CAS  PubMed  Google Scholar 

  • Rall W (1977) Core conductor theory and cable properties of neurons. In: Handbook of physiology. The nervous system. Cellular biology of neurons, sect 1, vol 11. American Physiological Society, Bethesda, pp 39–8

  • Rall W, Burke RE, Smith TG, Nelson PG, Frank K (1967) Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. J Neurophysiol 30: 1169–1193

    CAS  PubMed  Google Scholar 

  • Rekling JC, Funk GD, Bayliss DA, Dong XW, Feldman JL (2000) Synaptic control of motoneuronal excitability. Physiol Rev 80(2): 767–852

    CAS  PubMed  Google Scholar 

  • Rudolph M, Destexhe A (2003) Characterization of subthreshold voltage fluctuations in neuronal membranes. Neural Comput 15: 2577–2618

    Article  CAS  PubMed  Google Scholar 

  • Schomburg ED (1990) Spinal sensorimotor systems and their supraspinal control. Neurosci Res 7: 265–340

    Article  CAS  PubMed  Google Scholar 

  • Segev I, Parnas I (1983) Synaptic integration mechanisms: theoretical and experimental investigation of temporal postsynaptic interactions between excitatory and inhibitory inputs. Biophys J 41: 41–50

    Article  CAS  PubMed  Google Scholar 

  • Siwy Z, Fulinski A (2002) Origin of 1/f (alpha) noise in membrane channel currents. Phys Rev Lett 89(15): 158101

    Article  CAS  PubMed  Google Scholar 

  • Windhorst U, Meyer-Lohmann J, Kirmayer D, Zochodne D (1997) Renshaw cell responses to intra-arterial injection of muscle metabolites into cat calf muscles. Neurosci Res 27: 235–247

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kostyukov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostyukov, A.I., Lytvynenko, S.V., Bulgakova, N.V. et al. Subthreshold activation of spinal motoneurones in the stretch reflex: experimental data and modeling. Biol Cybern 100, 307–318 (2009). https://doi.org/10.1007/s00422-009-0303-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0303-z

Keywords

Navigation