Biological Cybernetics

, Volume 99, Issue 4–5, pp 427–441 | Cite as

Minimal Hodgkin–Huxley type models for different classes of cortical and thalamic neurons

  • Martin Pospischil
  • Maria Toledo-Rodriguez
  • Cyril Monier
  • Zuzanna Piwkowska
  • Thierry Bal
  • Yves Frégnac
  • Henry Markram
  • Alain Destexhe
Prospects

Abstract

We review here the development of Hodgkin–Huxley (HH) type models of cerebral cortex and thalamic neurons for network simulations. The intrinsic electrophysiological properties of cortical neurons were analyzed from several preparations, and we selected the four most prominent electrophysiological classes of neurons. These four classes are “fast spiking” “regular spiking” “intrinsically bursting” and “low-threshold spike” cells. For each class, we fit “minimal” HH type models to experimental data. The models contain the minimal set of voltage-dependent currents to account for the data. To obtain models as generic as possible, we used data from different preparations in vivo and in vitro, such as rat somatosensory cortex and thalamus, guinea-pig visual and frontal cortex, ferret visual cortex, cat visual cortex and cat association cortex. For two cell classes, we used automatic fitting procedures applied to several cells, which revealed substantial cell-to-cell variability within each class. The selection of such cellular models constitutes a necessary step towards building network simulations of the thalamocortical system with realistic cellular dynamical properties.

Keywords

Computational models Cerebral cortex Thalamus Intrinsic neuronal properties Biophysical models Model fitting Intracellular recordings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achard P, De Schutter E (2006) Complex parameter landscape for a complex neuron model. PLoS Comput Biol 2: e94CrossRefPubMedGoogle Scholar
  2. Baldi P, Vanier MC, Bower JM (1998) On the use of Bayesian methods for evaluating compartmental neural models. J Comput Neurosci 5: 285–314CrossRefPubMedGoogle Scholar
  3. Bhalla US, Bower JM (1993) Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. J Neurophysiol 69: 1948–1965PubMedGoogle Scholar
  4. Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94: 3637–3642CrossRefPubMedGoogle Scholar
  5. Cauller LJ, Connors BW (1992) Functions of very distal dendrites: experimental and computational studies of Layer I synapses on neocortical pyramidal cells. In: McKenna T, Davis J, Zornetzer SF (eds) Single neuron computation. Academic Press, BostonGoogle Scholar
  6. Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13: 99–104CrossRefPubMedGoogle Scholar
  7. Contreras D, Steriade M (1995) Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci 15: 604–622PubMedGoogle Scholar
  8. de la Peña E, Geijo-Barrientos E (1996) Laminar organization, morphology and physiological properties of pyramidal neurons that have the low-threshold calcium current in the guinea-pig frontal cortex. J Neurosci 16: 5301–5311PubMedGoogle Scholar
  9. Destexhe A (2001) Simplified models of neocortical pyramidal cells preserving somatodendritic voltage attenuation. Neurocomputing 38: 167–173CrossRefGoogle Scholar
  10. Destexhe A, Bal T, McCormick DA, Sejnowski TJ (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol 76: 2049–2070PubMedGoogle Scholar
  11. Destexhe A, Contreras D, Steriade M, Sejnowski TJ, Huguenard JR (1996) In vivo, in vitro and computational analysis of dendritic calcium currents in thalamic reticular neurons. J Neurosci 16: 169–185PubMedGoogle Scholar
  12. Destexhe A, Neubig M, Ulrich D, Huguenard JR (1998) Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 18: 3574–3588PubMedGoogle Scholar
  13. Destexhe A, Contreras D, Steriade M (2001) LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations. Neurocomputing 38: 555–563CrossRefGoogle Scholar
  14. Druckmann S, Banitt Y, Gidon A, Schurmann F, Markram H, Segev I (2007) A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Front Neurosci 1: 7–18CrossRefPubMedGoogle Scholar
  15. Eichler-West R, Wilcox G (1997) Robust parameter selection for compartmental models of neurons using evolutionary algorithms. In: Bower JM (eds) Computational neuroscience: trends in research 1997. Plenum Press, New York, pp 75–80Google Scholar
  16. Foster WR, Ungar LH, Schwaber JS (1993) Significance of conductances in Hodgkin–Huxley models. J Neurophysiol 70: 2502–2518PubMedGoogle Scholar
  17. Golowasch J, Goldman MS, Abbott LF, Marder E (2002) Failure of averaging in the construction of a conductance-based neuron model. J Neurophysiol 87: 1129–1131PubMedGoogle Scholar
  18. Gray CM, McCormick DA (1996) Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science 274: 109–113CrossRefPubMedGoogle Scholar
  19. Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287: 273–278CrossRefPubMedGoogle Scholar
  20. Haufler D, Morinc F, Lacaille JC, Skinner FK (2007) Parameter estimation in single-compartment neuron models using a synchronization-based method. Neurocomputing 70: 1605–1610CrossRefGoogle Scholar
  21. Hines ML, Carnevale NT (1997) The neuron simulation environment. Neural Comput 9: 1179–1209CrossRefPubMedGoogle Scholar
  22. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544PubMedGoogle Scholar
  23. Holmes W, Ambros-Ingerson J, Grover L (2006) Fitting experimental data to models that use morphological data from public databases. J Computat Neurosci 20: 349–365CrossRefGoogle Scholar
  24. Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 68: 1373–1383PubMedGoogle Scholar
  25. Huguenard JR, Prince DA (1992) A novel T-type current underlies prolonged Ca2+-dependent bursts firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci 12: 3804–3817PubMedGoogle Scholar
  26. Izhikevich EM (2004) Which model to use for cortical spiking neurons?. IEEE Trans Neural Netw 15: 1063–1070CrossRefPubMedGoogle Scholar
  27. Jolivet R, Lewis TJ, Gerstner W (2004) Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J Neurophysiol 92: 959–976CrossRefPubMedGoogle Scholar
  28. LeMasson G, Maex R (2001) Introduction to equation solving and parameter fitting. In: De Schutter E (eds) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, pp 1–22Google Scholar
  29. Llinás RR (1988) The intrinsic electrophysiological properties of mammalian neurons: a new insight into CNS function. Science 242: 1654–1664CrossRefPubMedGoogle Scholar
  30. Major G, Larkmann AU, Jonas P, Sakmann B, Jack JJB (1994) Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J Neurosci 14: 4613–4638PubMedGoogle Scholar
  31. Marder E, Tobin AE, Grashow R (2007) How tightly tuned are network parameters? Insight from computational and experimental studies in small rhythmic motor networks. Prog Brain Res 165: 193–200CrossRefPubMedGoogle Scholar
  32. McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54: 782–806PubMedGoogle Scholar
  33. Monier C, Chavane F, Baudot P, Graham LJ, Frégnac Y (2003) Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron 37: 663–680CrossRefPubMedGoogle Scholar
  34. Press WH, Flannery BP, Teukolsky SA (1992) Numerical recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  35. Rall W, Burke RE, Holmes WR, Jack JJ, Redman SJ, Segev I (1992) Matching dendritic neuron models to experimental data. Physiol Rev 72: S159–S186PubMedGoogle Scholar
  36. Rapp M, Segev I, Yarom Y (1994) Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells. J Physiol 474: 101–118PubMedGoogle Scholar
  37. Rauch A, La Camera G, Lüscher H-R, Senn W, Fusi S (2003) Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo like input currents. J Neurophysiol 90: 1598–1612CrossRefPubMedGoogle Scholar
  38. Renaud S, Tomas J, Bornat Y, Daouzli A, Saïghi S (2007) Neuromimetic ICs with analog cores: an alternative for simulating spiking neural networks. In: International symposium on circuits and systems (ISCAS07), New-Orleans, USA, 27–30 May (ISBN 1-4244-0921-1), pp 3355–358Google Scholar
  39. Reuveni I, Friedman A, Amitai Y, Gutnick MJ (1993) Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites. J Neurosci 13: 4609–4621PubMedGoogle Scholar
  40. Rinzel J (1987) A formal classification of bursting mechanisms in excitable systems. In: Teramoto E, Yamaguti M (eds) Mathematical topics in population biology, morphogenesis and neurosciences. Springer, Berlin, pp 267–281Google Scholar
  41. Rinzel J, Ermentrout GB (1989) Analysis of neural excitability and oscillations. In: Koch C, Segev I (eds) Methods in neuronal modeling. MIT press, Cambridge, pp 135–169Google Scholar
  42. Rose RM, Hindmarsh JL (1989) The assembly of ionic currents in a thalamic neuron. I. The three-dimensional model. Proc R Soc Lond B Biol Sci 237: 267–288CrossRefPubMedGoogle Scholar
  43. Sayer RJ, Schwindt PC, Crill WE (1990) High- and low-threshold calcium currents in neurons acutely isolated from rat sensorimotor cortex. Neurosci Lett 120: 175–178CrossRefPubMedGoogle Scholar
  44. Shu Y, Hasenstaub A, Badoual M, Bal T, McCormick DA (2003) Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J Neurosci 23: 10388–10401PubMedGoogle Scholar
  45. Smith GD, Cox CL, Sherman M, Rinzel J (2000) Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. J Neurophysiol 83: 588–610PubMedGoogle Scholar
  46. Steriade M, Timofeev I, Durmüller N, Grenier F (1998) Dynamic properties of corticothalamic neurons and local cortical interneurons generating fast rhythmic (30–40 Hz) spike bursts. J Neurophysiol 79: 483–490PubMedGoogle Scholar
  47. Stratford K, Mason A, Larkman A, Major G, Jack J (1989) The modeling of pyramidal neurones in the visual cortex. In: Durbin A, Miall C, Mitchison G (eds) The computing neuron. Addison-Wesley, Workingham, pp 296–321Google Scholar
  48. Stuart G, Spruston N (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18: 3501–3510PubMedGoogle Scholar
  49. Tawfik B, Durand DM (1994) Nonlinear parameter-estimation by linear associationapplication to a 5-parameter passive neuron model. IEEE Trans Biomed Eng 41: 461–469CrossRefPubMedGoogle Scholar
  50. Taylor AL, Hickey TJ, Prinz AA, Marder E (2006) Structure and visualization of high-dimensional conductance spaces. J Neurophysiol 96: 891–905CrossRefPubMedGoogle Scholar
  51. Tien JH, Guckenheimer J (2008) Parameter estimation for bursting neural models. J Computat Neurosci 24: 358–373CrossRefGoogle Scholar
  52. Toledo-Rodriguez M, Blumenfeld B, Wu C, Luo J, Attali B, Goodman P, Markram H (2004) Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cereb Cortex 14: 1310–1327CrossRefPubMedGoogle Scholar
  53. Traub RD, Miles R (1991) Neuronal networks of the Hippocampus. Cambridge University Press, CambridgeGoogle Scholar
  54. Vanier MC, Bower JM (1999) A comparative survey of automated parameter-search methods for compartmental neural models. J Comput Neurosci 7: 149–171CrossRefPubMedGoogle Scholar
  55. Yamada WM, Koch C, Adams PR (1989) Multiple channels and calcium dynamics. In: Koch C, Segev I (eds) Methods in neuronal modeling. MIT press, Cambridge, pp 97–134Google Scholar
  56. Zou Q, Bornat Y, Saïghi S, Tomas J, Renaud S, Destexhe A (2006) Analog-digital simulations of full conductance-based networks of spiking neurons with spike timing dependent plasticity. Network 17: 211–233CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Martin Pospischil
    • 1
  • Maria Toledo-Rodriguez
    • 2
  • Cyril Monier
    • 1
  • Zuzanna Piwkowska
    • 1
  • Thierry Bal
    • 1
  • Yves Frégnac
    • 1
  • Henry Markram
    • 3
  • Alain Destexhe
    • 1
    • 4
  1. 1.Unité de Neurosciences Intégratives et Computationnelles (UNIC), CNRSGif-sur-YvetteFrance
  2. 2.Brain and Body CentreUniversity of NottinghamNottinghamUK
  3. 3.Brain and Mind Institute, EPFLLausanneSwitzerland
  4. 4.UNIC, Bat 33, CNRSGif-sur-YvetteFrance

Personalised recommendations