Skip to main content

Advertisement

Log in

Enhanced signal detectability in comodulated noise introduced by compression

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Many examples of natural noise show common amplitude modulations at different frequency regions. This kind of noise has been termed comodulated noise and is widely examined in hearing research, where an enhanced detectability of pure tones and narrow noise bands in comodulated noise compared to unmodulated noise is well known as the CMR or CDD effects, respectively. Here it is shown that only one signal processing step, a compressive nonlinearity motivated by the peripheral auditory system, is sufficient to explain a considerable contribution to these effects. Using an analytical approach, the influence of compression on the detectability of periodic and narrow band signals in the presence of unmodulated and comodulated noise is investigated. This theoretical treatment allows for identifying the mechanism leading to improved signal detection. The compressive nonlinearity constitutes an adaptive gain which selectively boosts a stimulus during time spans of inherently increased signal-to-noise ratio and attenuates it during time spans dominated by noise. On average, these time spans are more pronounced in stimuli with comodulated noise than with unmodulated noise, thus giving rise to the observed CMR and CDD effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacon SP, Lee J (1997) The modulated–unmodulated difference: effects of signal frequency and masker modulation depth. J Acoust Soc Am 101(6): 3617–3624

    Article  PubMed  CAS  Google Scholar 

  • Bacon SP, Fay RR, Popper AN (eds) (2003 ) Compression: from Cochlea to Cochlear implants. Springer, New York

    Google Scholar 

  • Bee MA, Buschermöhle M, Klump GM (2007) Detecting modulated signals in modulated noise: II. Neural thresholds in the songbird forebrain. Eur J Neurocsci 26: 1979–1994

    Article  Google Scholar 

  • Bernstein LR, van der Par S, Trahiotis C (1999) The normalized interaural correlation: accounting for NoSπ thresholds obtained with Gaussian and “low-noise” masking noise. J Acoust Soc Am 106(2): 870–876

    Article  PubMed  CAS  Google Scholar 

  • Borrill SJ, Moore BCJ (2002) Evidence that comodulation detection differences depend on within-channel mechanisms. J Acoust Soc Am 111(1): 309–319

    Article  PubMed  Google Scholar 

  • Buchholz JM, Mourjopoulos J (2004) A computational auditory masking model based on signal-dependent compression. I. Model description and performance analysis. Acta Acoust United Ac 90(5): 873–886

    Google Scholar 

  • Buschermöhle M, Feudel U, Klump GM, Bee MA (2006) Signal detection enhanced by comodulated noise. Fluct Noise Let 6(4): L339–L347

    Article  Google Scholar 

  • Buschermöhle M, Verhey JL, Feudel U, Freund JA (2007) The role of the auditory periphery in comodulation detection difference and comodulation masking release. Biol Cybern 97(397): 397–411

    Article  PubMed  Google Scholar 

  • Carlyon RP, Jaysurya Datta A (1997) Excitation produced by Schroeder-phase complexes: Evidence for fast-acting compression in the auditory system. J Acoust Soc Am 101(6): 3636–3647

    Article  PubMed  CAS  Google Scholar 

  • Ernst SMA, Verhey JL (2006) Role of suppression and retro-cochlear processes in comodulation masking release. J Acoust Soc Am 120(6): 3843–3852

    Article  PubMed  Google Scholar 

  • Gabor D (1946) Theory of communication. J IEE (Lond) 93: 429–457

    Google Scholar 

  • Grose JH, Hall JW (1996) Cochlear hearing loss and the processing of modulation: Effects of temporal asynchrony. J Acoust Soc Am 100(1): 519–527

    Article  PubMed  CAS  Google Scholar 

  • Hall JW, Grose JH (1994) Signal detection in complex comodulated backgrounds by normal hearing and cochlear-impaired listeners. J Acoust Soc Am 95(1): 435–443

    Article  PubMed  Google Scholar 

  • Hall JW, Haggard MP, Fernandes MA (1984) Detection in noise by spectro-temporal pattern analysis. J Acoust Soc Am 76(1): 50–56

    Article  PubMed  CAS  Google Scholar 

  • Hall JW, Davis AC, Haggard MP, Pillsbury HC (1988) Spectro-temporal analysis in normal-hearing and cochlear-impaired listeners. J Acoust Soc Am 84(4): 1325–1331

    Article  PubMed  Google Scholar 

  • Harte JM, Elliott SJ, Rice HJ (2005) A comparison of various nonlinear models of cochlear compression. J Acoust Soc Am 117(6): 3777–3786

    Article  PubMed  Google Scholar 

  • Hartmann WM (1998) Signals, sound, and sensation. Springer, New York

    Google Scholar 

  • van der Heijden M (2005) Cochlear gain control. J Acoust Soc Am 117(3): 1223–1233

    Article  PubMed  Google Scholar 

  • Hohmann V (2002) Frequency analysis and synthesis using a gammatone filterbank. Acta Acoust United Ac 88: 433–442

    Google Scholar 

  • Jensen KK (2007) Comodulation detection differences in the hooded crow (Corvus corone cornix), with direct comparison to human subjects. J Acoust Soc Am 121(3): 1783–1789

    Article  PubMed  Google Scholar 

  • Köppl C, Yates G (1999) Coding of sound pressure level in the barn owl’s auditory nerve. J Neurosci 19(21): 9674–9686

    PubMed  Google Scholar 

  • Langemann U, Klump GM (2001) Signal detection in amplitude-modulated maskers. I. Behavioural auditory thresholds in a songbird. Eur J Neurosci 13: 1025–1032

    Article  PubMed  CAS  Google Scholar 

  • Langemann U, Klump GM (2007) Detecting modulated signals in modulated noise: I. Behavioural auditory thresholds in a songbird. Eur J Neurosci 26: 1969–1978

    Article  PubMed  Google Scholar 

  • Lopez-Poveda EA, Meddis R (2001) A human nonlinear cochlear filterbank. J Acoust Soc Am 110(6): 3107–3118

    Article  PubMed  CAS  Google Scholar 

  • McFadden D (1987) Comodulation detection differences using noise-band signals. J Acoust Soc Am 81(5): 1519–1527

    Article  PubMed  CAS  Google Scholar 

  • McNamara B, Wiesenfeld K (1989) Theory of stochastic resonance. Phys Rev A 39: 4854–4869

    Article  PubMed  CAS  Google Scholar 

  • Meddis R, Delahaye R, O’Mard L, Sumner C, Fantini DA, Winter I, Pressnitzer D (2002) A model of signal processing in the cochlear nucleus: comodulation masking release. Acta Acoust United Ac 88(3): 387–398

    Google Scholar 

  • Moore BCJ, Shailer MJ (1991) Comodulation masking release as a function of level. J Acoust Soc Am 90(2): 829–835

    Article  PubMed  CAS  Google Scholar 

  • Moore BCJ, Shailer MJ, Hall JW, Schooneveldt GP (1993) Comodulation masking release in subjects with unilateral and bilateral hearing impairment. J Acoust Soc Am 93(1): 435–451

    Article  PubMed  CAS  Google Scholar 

  • Nelken I, Rotman Y, Yosef OB (1999) Response of auditory-cortex neurons to structural features of natural sounds. Nature 397: 154–157

    Article  PubMed  CAS  Google Scholar 

  • Oxenham AJ, Bacon SP (2003) Cochlear compression: perceptual measures and implications for normal and impaired hearing. Ear Hear 24(5): 352–366

    Article  PubMed  Google Scholar 

  • Papoulis A, Unnikrishna Pillai S (2002) Probability, random variables, and stochastic processes. McGraw-Hill, New York

    Google Scholar 

  • Plack C (2004) Inferred basilar-membrane response functions for listeners with mild to moderate sensorineural hearing loss. J Acoust Soc Am 115(4): 1684–1695

    Article  PubMed  Google Scholar 

  • Priestley MB (1983) Spectral analysis and time series. Academic Press, New York

    Google Scholar 

  • Schooneveldt GP, Moore BCJ (1987) Comodulation masking release (CMR): effects of signal frequency, flanking-band frequency, masker bandwidth, flanking-band level, and monotic versus dichotic presentation of the flanking band. J Acoust Soc Am 82(6): 1944–1956

    Article  PubMed  CAS  Google Scholar 

  • Sumner CJ, Lopez-Poveda EA, O’Mard LP, Meddis R (2002) A revised model of the inner-hair cell and auditory-nerve complex. J Acoust Soc Am 111(5): 2178–2188

    Article  PubMed  Google Scholar 

  • Verhey JL, Dau T, Kollmeier B (1999) Within-channel cues in comodulation masking release (CMR): Experiments and model predictions using a modulation-filterbank model. J Acoust Soc Am 106(5): 2733–2745

    Article  PubMed  CAS  Google Scholar 

  • Verhey JL, Pressnitzer D, Winter IM (2003) The psychophysics and physiology of comodulation masking release. Exp Brain Res 153: 405–417

    Article  PubMed  Google Scholar 

  • Weisstein EW (2002) CRC concise encyclopedia of mathematics. Chapman & Hall/CRC, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Buschermöhle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buschermöhle, M., Feudel, U. & Freund, J.A. Enhanced signal detectability in comodulated noise introduced by compression. Biol Cybern 99, 491–502 (2008). https://doi.org/10.1007/s00422-008-0255-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0255-8

Keywords

Navigation