Analysis and modeling of time-variant amplitude–frequency couplings of and between oscillations of EEG bursts

Abstract

Low-frequency (0.5–2.5 Hz) and individually defined high-frequency (7–11 or 8–12 Hz; 11–15 or 14–18 Hz) oscillatory components of the electroencephalogram (EEG) burst activity derived from thiopental-induced burst-suppression patterns (BSP) were investigated in seven sedated patients (17–26 years old) with severe head injury. The predominant high-frequency burst oscillations (>7 Hz) were detected for each patient by means of time-variant amplitude spectrum analysis. Thereafter, the instantaneous envelope (IE) and the instantaneous frequency (IF) were computed for these low- and high-frequency bands to quantify amplitude–frequency dependencies (envelope–envelope, envelope–frequency, and frequency–frequency correlations). Time-variant phase-locking, phase synchronization, and quadratic phase couplings are associated with the observed amplitude–frequency characteristics. Additionally, these time-variant analyses were carried out for modeled burst patterns. Coupled Duffing oscillators were adapted to each EEG burst and by means of these models data-based burst simulations were generated. Results are: (1) strong envelope–envelope correlations (IE courses) can be demonstrated; (2) it can be shown that a rise of the IE is associated with an increase of the IF (only for the frequency bands 0.5–2.5 and 7–11 or 8–12 Hz); (3) the rise characteristics of all individually averaged envelope–frequency courses (IE–IF) are strongly correlated; (4) for the 7–11 or 8–12 Hz oscillation these associations are weaker and the variation between the time courses of the patients is higher; (5) for both frequency ranges a quantitative amplitude–frequency dependency can be shown because higher IE peak maxima are accompanied by stronger IF changes; (6) the time range of significant phase-locking within the 7–11 or 8–12 Hz frequency bands and of the strongest quadratic phase couplings (between 0.5–2.5 and 7–11 or 8–12 Hz) is between 0 and 1,000 ms; (7) all phase coupling characteristics of the modeled bursts accord well with the corresponding characteristics of the measured EEG burst data. All amplitude–frequency dependencies and phase locking/coupling properties described here are known from and can be discussed using coupled Duffing oscillators which are characterized by autoresonance properties.

This is a preview of subscription content, access via your institution.

References

  1. Arnold M, Witte H, Schelenz C (2002) Time-variant investigation of quadratic phase couplings caused by amplitude modulation in electroencephalic burst-suppression patterns. J Clin Monit Comput 17: 115–123

    PubMed  Article  Google Scholar 

  2. Benjamini Y, Krieger AM, Yekutieli D (2006) Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93: 491–507

    Article  Google Scholar 

  3. Bruns A, Eckhorn R (2004) Task-related coupling from high- to low-frequency signals among visual cortical areas in human subdural recordings. Int J Psychophysiol 51: 97–116

    PubMed  Article  Google Scholar 

  4. Celka P, Boashash B, Colditz P (2001) Preprocessing and time-frequency analysis of newborn EEG seizures. IEEE Eng Med Biol Mag 20: 30–39

    PubMed  Article  CAS  Google Scholar 

  5. Fajans J, Gilson E, Friedland L (2001) The effect of damping on autoresonant (nonstationary) excitation. Phys Plasma 8: 423–427

    Article  CAS  Google Scholar 

  6. Ghosh D, Chowdhury AR, Saha P (2008) On the various kinds of synchronzation in delayed Duffing-Van der Pol system. Commun Nonlinear Sci Numer Simul 13: 790–803

    Article  Google Scholar 

  7. Haueisen J, Leistritz L, Susse T, Curio G, Witte H (2007) Identifying mutual information transfer in the brain with differential-algebraic modeling: evidence for fast oscillatory coupling between cortical somatosensory areas 3b and 1. Neuroimage 37: 130–136

    PubMed  Article  Google Scholar 

  8. Huotari AM, Koskinen M, Suominen K, Alahuhta S, Remes R, Hartikainen KM, Jantti V (2004) Evoked EEG patterns during burst suppression with propofol. Br J Anaesth 92: 18–24

    PubMed  Article  CAS  Google Scholar 

  9. Jensen O, Colgin LL (2007) Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci 11: 267–269

    PubMed  Article  Google Scholar 

  10. Kassell NF, Hitchon PW, Gerk MK, Sokoll MD, Hill TR (1980) Alterations in cerebral blood flow, oxygen metabolism, and electrical activity produced by high dose sodium thiopental. Neurosurgery 7: 598–603

    PubMed  CAS  Article  Google Scholar 

  11. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8: 194–208

    PubMed  Article  CAS  Google Scholar 

  12. Lehmacher W (1980) Tests for profile analysis of paired curves based on Friedman ranking methods. Biom J 141–152

  13. Leistritz L, Suesse T, Haueisen J, Hilgenfeld B, Witte H (2006) Methods for parameter identification in oscillatory networks and application to cortical and thalamic 600 Hz activity. J Physiol Paris 99: 58–65

    PubMed  Article  CAS  Google Scholar 

  14. Leistritz L, Putsche P, Schwab K, Hesse W, Susse T, Haueisen J, Witte H (2007) Coupled oscillators for modeling and analysis of EEG/MEG oscillations. Biomed Tech (Berl) 52: 83–89

    Article  Google Scholar 

  15. Leymarie F, Levine MD (1993) Tracking deformable objects in the plane using an active contour model. IEEE Trans Pattern Anal Mach Intell 15: 617

    Article  Google Scholar 

  16. Niedermeyer E, da Silva L (1987) Electroencephalography: basic principles, clinical applications, and related fields. Urban & Schwarzenberg, Baltimore

    Google Scholar 

  17. Priestley MB (1988) Non-linear non-stationary time series analysis. Academic Press, New York

    Google Scholar 

  18. Sarkela M, Mustola S, Seppanen T, Koskinen M, Lepola P, Suominen K, Juvonen T, Tolvanen-Laakso H, Jantti V (2002) Automatic analysis and monitoring of burst suppression in anesthesia. J Clin Monit Comput 17: 125–134

    PubMed  Article  Google Scholar 

  19. Schack B, Weiss S (2005) Quantification of phase synchronization phenomena and their importance for verbal memory processes. Biol Cybern 92: 275–287

    PubMed  Article  Google Scholar 

  20. Schack B, Witte H, Helbig M, Schelenz C, Specht M (2001) Time-variant non-linear phase-coupling analysis of EEG burst patterns in sedated patients during electroencephalic burst suppression period. Clin Neurophysiol 112: 1388–1399

    PubMed  Article  CAS  Google Scholar 

  21. Solis FJ, Wets RJB (1981) Minimization by random search techniques. Math Oper Res 6: 19–30

    Article  Google Scholar 

  22. Srebro R (1995) The Duffing oscillator: a model for the dynamics of the neuronal groups comprising the transient potential. Electroencephalogr Clin Neurophysiol 96: 561–573

    PubMed  Article  CAS  Google Scholar 

  23. Stefanovska A (2006) Coupled oscillators: complex but not complicated cardiovascular and brain interactions. Conf Proc IEEE Eng Med Biol Soc 1: 437–440

    PubMed  Google Scholar 

  24. Steriade M, Amzica F, Contreras D (1994) Cortical and thalamic cellular correlates of electroencephalographic burst-suppression. Electroencephalogr Clin Neurophysiol 90: 1–16

    PubMed  CAS  Google Scholar 

  25. Vincent UE, Kenfack A (2008) Synchronization and bifurcation structures in coupled periodically forced non-identical Duffing oscillators. Phys Scr 77: 045005

    Article  CAS  Google Scholar 

  26. Witte H, Griessbach G, Krajca V, Rother M, Stallknecht K, Putsche P (1989) Möglichkeiten des Einsatzes der diskreten Hilberttransformation in der Biosignalanalyse - Nachweis der Effizienz durch Signalmodelle (Application of discrete Hilbert transformation in biosignal analysis - verification of its efficiency by signal models). Medizintechnik 29: 65–70

    Google Scholar 

  27. Witte H, Stallknecht K, Ansorg J, Griessbach G, Petranek S, Rother M (1990) Using discrete Hilbert transformation to realize a general methodical basis for dynamic EEE mapping. A methodical investigation. Automedica 13: 1–13

    Google Scholar 

  28. Witte H, Eiselt M, Patakova I, Petranek S, Griessbach G, Krajca V, Rother M (1991) Use of discrete Hilbert transformation for automatic spike mapping: a methodological investigation. Med Biol Eng Comput 29: 242–248

    PubMed  Article  CAS  Google Scholar 

  29. Witte H, Schelenz C, Specht M, Jager H, Putsche P, Arnold M, Leistritz L, Reinhart K (1999) Interrelations between EEG frequency components in sedated intensive care patients during burst-suppression period. Neurosci Lett 260: 53–56

    PubMed  Article  CAS  Google Scholar 

  30. Witte H, Schack B, Helbig M, Putsche P, Schelenz C, Schmidt K, Specht M (2000) Quantification of transient quadratic phase couplings within EEG burst patterns in sedated patients during electroencephalic burst-suppression period. J Physiol Paris 94: 427–434

    PubMed  Article  CAS  Google Scholar 

  31. Witte H, Putsche P, Schwab K, Eiselt M, Helbig M, Suesse T (2004) On the spatio-temporal organisation of quadratic phase-couplings in ‘trace alternant’ EEG pattern in full-term newborns. Clin Neurophysiol 115: 2308–2315

    PubMed  Article  CAS  Google Scholar 

  32. Wolter S, Friedel C, Bohler K, Hartmann U, Kox WJ, Hensel M (2006) Presence of 14 Hz spindle oscillations in the human EEG during deep anesthesia. Clin Neurophysiol 117: 157–168

    PubMed  Article  CAS  Google Scholar 

  33. Zeeman EC (1976) Duffing’s equation in brain modelling. Bull Inst Math Appl 12: 207–214

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Herbert Witte.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Witte, H., Putsche, P., Hemmelmann, C. et al. Analysis and modeling of time-variant amplitude–frequency couplings of and between oscillations of EEG bursts. Biol Cybern 99, 139–157 (2008). https://doi.org/10.1007/s00422-008-0245-x

Download citation

Keywords

  • Amplitude–frequency correlations
  • Autoresonance
  • Coupled duffing oscillators
  • EEG
  • Burst patterns
  • Oscillatory frequency components
  • Burst-suppression pattern
  • Sedated patients