Skip to main content
Log in

Neural model of disinhibitory interactions in the modified Poggendorff illusion

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Visual illusions can be strengthened or weakened with the addition of extra visual elements. For example, in the Poggendorff illusion, with an additional bar added, the illusory skew in the perceived angle can be enlarged or reduced. In this paper, we show that a nontrivial interaction between lateral inhibitory processes in the early visual system (i.e., disinhibition) can explain such an enhancement or degradation of the illusory effect. The computational model we derived successfully predicted the perceived angle in the Poggendorff illusion task that was modified to include an extra thick bar. The concept of disinhibition employed in the model is general enough that we expect it can be further extended to account for other classes of geometric illusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso J and Martinez LM (1998). Functional connectivity between simple cells and complex cells in cat striate cortex. Nat Neurosci 1: 395–403

    Article  PubMed  CAS  Google Scholar 

  • Blakemore C and Tobin EA (1972). Lateral inhibition between orientation detectors in the cat’s visual cortex. Exp Brain Res 15: 439–440

    Article  PubMed  CAS  Google Scholar 

  • Blakemore C, Carpenter RH and Georgeson MA (1970). Lateral inhibition between orientation detectors in the human visual system. Nature 228: 37–39

    Article  PubMed  CAS  Google Scholar 

  • Brodie S, Knight BW and Ratliff F (1978). The spatiotemporal transfer function of the limulus lateral eye. J Gen Physiol 72: 161–202

    Google Scholar 

  • Carpenter RH and Blakemore C (1973). Interactions between orientations in human vision. Exp Brain Res 18: 287–303

    Article  PubMed  CAS  Google Scholar 

  • Chapman B, Stryker MP and Bonhoeffer T (1996). Development of orientation preference maps in ferret primary visual cortex. J Neurosci 16: 6643–6653

    Google Scholar 

  • Coren S (1970). Lateral inhibition and the Wundt–Hering illusion. Psychonomic Sci 18: 341

    Google Scholar 

  • Coren S (1999). Relative contribution of lateral inhibition to the Delboeuf and Wundt–Hering illusions. Percept Motor Skills 99: 771–784

    Article  Google Scholar 

  • Everson RM, Prashanth AK, Gabbay M, Knight BW, Sirovich L and Kaplan E (1998). Representation of spatial frequency and orientation in the visual cortex. Proc Natl Acad Sci USA 95: 8334–8338

    Article  PubMed  CAS  Google Scholar 

  • Fermüller C and Malm H (2004). Uncertainty in visual processes predicts geometrical optical illusions. Vis Res 44: 727–749

    Article  PubMed  Google Scholar 

  • Frech MJ, Perez-Leon J, Wassle H and Backus KH (2001). Characterization of the spontaneous synaptic activity of amacrine cells in the mouse retina. J Neurophysiol 86: 1632–1643

    PubMed  CAS  Google Scholar 

  • Gelbtuch MH, Calvert JE, Harris JP and Phillipson OT (1986). Modification of visual orientation illusions by drugs which influence dopamine and gaba neurones: differential effects on simultaneous and successive illusions. J Psychopharm 90(3): 379–383

    CAS  Google Scholar 

  • Gillam B (1971). A depth processing theory of the Poggendorff illusion. Percep Psychophys 10: 211–216

    Google Scholar 

  • Gillam B (1980). Geometric illusions. Sci Am 242: 102–111

    Article  Google Scholar 

  • Hansen T (2002) A new theory of the Poggendorff illusion based on stereoscopic vision. In: Proceedings of 5. Tübinger Wahrnehmungskonferenz

  • Hartline HK and Ratliff F (1957). Inhibitory interaction of receptor units in the eye of Limulus. J Gen Physiol 40: 357–376

    Article  PubMed  CAS  Google Scholar 

  • Hartline HK and Ratliff F (1958). Spatial summation of inhibitory influcences in the eye of limulus and the mutual interaction of receptor units. J Gen Physiol 41: 1049–1066

    Article  PubMed  CAS  Google Scholar 

  • Hartline HK, Wager H and Ratliff F (1956). Inhibition in the eye of limulus. J Gen Physiol 39: 651–673

    Article  PubMed  CAS  Google Scholar 

  • Howe CQ, Yang Z and Purves D (2005). The Poggendorff illusion explained by natural scene geometry. Proc Natl Acad Sci USA 102: 7707–7712

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH and Wiesel TN (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (London) 160: 106–154

    CAS  Google Scholar 

  • Judge SJ, Wurtz RH and Richmond BJ (1980). Vision during saccadic eye movements. I. Visual interactions in striate cortex. J Neurophysiol 43: 1133–1155

    CAS  Google Scholar 

  • Kolb H and Nelson R (1993). Off-alpha and off-beta ganglion cells in the cat retina. J Comp Neurol 329: 85–110

    Article  PubMed  CAS  Google Scholar 

  • Li CY, Zhou YX, Pei X, Qiu IY, Tang CQ and Xu XZ (1992). Extensive disinhibitory region beyond the classical receptive field of cat retinal ganglion cells. Vis Res 32: 219–228

    Article  PubMed  CAS  Google Scholar 

  • Martinez LM, Alonso J, Reid RC and Hirsch JA (2002). Laminar processing of stimulus orientation in cat visual cortex. J Physiol 540.1: 321–333

    Article  CAS  Google Scholar 

  • Morgan M (1999). The poggendorff illusion: a bias in the estimation of the orientation of virtual lines by second-stage filters. Vis Res 39: 2361–2380

    Article  PubMed  CAS  Google Scholar 

  • Neumann H, Pessoa L and Hansen T (1999). Interaction of on and off pathways for visual contrast measurement. Biol Cybern 81: 515–532

    Article  PubMed  CAS  Google Scholar 

  • Oyama T (1975). Determinants of the Zöllner illusion. J Psychol Res 37: 261–280

    Article  CAS  Google Scholar 

  • Prinzmetal W and Beck DM (2001). The tilt-constancy theory of visual illusions. J Exp Psychol Human Perception Perform 27: 206–217

    Article  CAS  Google Scholar 

  • Robinson JO (1998). The psychology of visual illusion. Dover, Mineola, NY

    Google Scholar 

  • Roska B, Nemeth E and Werblin F (1998). Response to change is facillitated by a three-neuron disinhibitory pathway in the tiger salamander retina. J Neurosci 18: 3451–3459

    PubMed  CAS  Google Scholar 

  • Serre T, Riesenhuber M (2004) Realistic modeling of simple and complex cell tuning in the HMAX model, and implications for invariant object recognition in cortex. Technical report, CBCL paper 239/AI Memo 2004-017, Massachusetts Institute of Technology, Cambridge, MA

  • Snippe HP (1996). Parameter extraction from population codes: a critical assessment. Neural Comput 8(3): 511–529

    Article  PubMed  CAS  Google Scholar 

  • Stevens CF (1964) A quantitative theory of neural interactions: theoretical and experimental investigations. Ph.D. thesis, The Rockefeller Institute

  • Tolansky S (1964). Optical illusions. Pergamon, London

    Google Scholar 

  • Westheimer G (2003). The distribution of preferred orientations in the peripheral visual field. Vis Res 43: 53–57

    Article  PubMed  Google Scholar 

  • Yu Y (2006) Computational role of disinhibition in brain function. Ph.D. thesis, Department of Computer Science, Texas A&M University

  • Yu Y, Choe Y (2004) Angular disinhibition effect in a modified Poggendorff illusion. In: Proceedings of the 26th annual conference of the Cognitive Science Society, pp 1500–1505

  • Yu Y and Choe Y (2006). A neural model of the scintillating grid illusion: disinhibition and self-inhibition in early vision. Neural Comput 18: 521–544

    Article  PubMed  Google Scholar 

  • Yu Y, Yamauchi T, Choe Y (2004) Explaining low level brightness– contrast visual illusion using disinhibition. In: Ijspeert AJ, Murata M, Wakamiya N (eds) Biologically inspired approaches to advanced information technology, lecture notes in computer science, vol 3141, pp 166–175

  • Zarándy A, Orzó L, Grawes E and Werblin F (1999). CNN-based models for color vision and visual illusions. IEEE Trans Circuits Syst I Fundam Theor Appl 46: 229–238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingwei Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Choe, Y. Neural model of disinhibitory interactions in the modified Poggendorff illusion. Biol Cybern 98, 75–85 (2008). https://doi.org/10.1007/s00422-007-0195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0195-8

Kewyords

Navigation