Skip to main content
Log in

The instructive role of binocular vision in the Xenopus tectum

  • Review
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This review presents the fascinating neurobiology underlying the development of the frog optic tectum, the brain structure where the two separate inputs from the two eye are combined into a single, integrated map. In the species Xenopus laevis, binocular visual information has a dramatic impact on axon growth and connectivity, and the formation of binocular connections in this system provides a rich basis for both theoretical and experimental investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

EPSC:

Excitatory postsynaptic current

GABA:

Gamma-aminobutyric acid

NMDA:

N-Methyl-D-aspartate

STDP:

Spike timing dependent plasticity

References

  • Albuquerque EX, Alkondon M, Pereira EF, Castro NG, Schrattenholz A, Barbosa CT, Bonfante-Cabarcas R, Aracava Y, Eisenberg HM and Maelicke A (1997). Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. J Pharmacol Exp Ther 280: 1117–1136

    PubMed  CAS  Google Scholar 

  • Allaerts W, De Vente J, Markerink-Van Ittersum M, Tuinhof R and Roubos EW (1998). Topographical relationship between neuronal nitric oxide synthase immunoreactivity and cyclic 3′,5′-guanosine monophosphate accumulation in the brain of the adult Xenopus laevis. J Chem Neuroanat 15: 41–56

    Article  PubMed  CAS  Google Scholar 

  • Bandarchi J, Scherer WJ and Udin SB (1994). Acceleration by NMDA treatment of visually induced map reorganization in juvenile Xenopus after larval eye rotation. J Neurobiol 25: 451–460

    Article  PubMed  CAS  Google Scholar 

  • Bi GQ and Rubin J (2005). Timing in synaptic plasticity: from detection to integration. Trends Neurosci 28: 222–228

    Article  PubMed  CAS  Google Scholar 

  • Braisted JE, McLaughlin T, Wang HU, Friedman GC, Anderson DJ and O’Leary DD (1997). Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system. Dev Biol 191: 14–28

    Article  PubMed  CAS  Google Scholar 

  • Chung S-H, Bliss TVP and Keating MJ (1974). The synaptic organization of optic afferents in the amphibian tectum. Proc R Soc Lond B 187: 421–447

    PubMed  CAS  Google Scholar 

  • Contestabile A (1976). Comparative survey on enzyme localization, ultrastructural arrangement and functional organization in the optic tectum of non-mammalian vertebrates. Experientia 32: 1223–1229

    Article  PubMed  CAS  Google Scholar 

  • Dudkin EA and Gruberg ER (2003). Nucleus isthmi enhances calcium influx into optic nerve fiber terminals in Rana pipiens. Brain Res 969: 44–52

    Article  PubMed  CAS  Google Scholar 

  • Edwards JA and Cline HT (1999). Light-induced calcium influx into retinal axons is regulated by presynaptic nicotinic acetylcholine receptor activity in vivo. J Neurophysiol 81: 895–907

    PubMed  CAS  Google Scholar 

  • Gaze RM and Keating MJ (1970). Receptive field properties of single units from the visual projection to the ipsilateral tectum in the frog. Q J Exp Physiol 55: 143–152

    CAS  Google Scholar 

  • Gaze RM, Keating MJ, Székely G and Beazley L (1970). Binocular interaction in the formation of specific intertectal neuronal connexions. Proc R Soc Lond B 175: 107–147

    Article  PubMed  CAS  Google Scholar 

  • Grant S and Keating MJ (1992). Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. III. Modifications following early eye rotation. Exp Brain Res 89: 383–396

    Article  PubMed  CAS  Google Scholar 

  • Gruberg ER and Udin SB (1978). Topographic projections between the nucleus isthmi and the tectum of the frog Rana pipiens. J Comp Neurol 179: 487–500

    Article  PubMed  CAS  Google Scholar 

  • Guo Y and Udin SB (2000). The development of abnormal axon trajectories after rotation of one eye in Xenopus. J Neurosci 20: 4189–4197

    PubMed  CAS  Google Scholar 

  • Hu B, Nikolakopoulou AM and Cohen-Cory S (2005). BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo. Development 132(19): 4285–4298

    Article  PubMed  CAS  Google Scholar 

  • Keating MJ and Kennard C (1987). Visual experience and the maturation of the ipsilateral visuotectal projection in Xenopus laevis. Neurosci 21: 519–527

    Article  CAS  Google Scholar 

  • Lin SY and Constantine-Paton M (1998). Suppression of sprouting: an early function of NMDA receptors in the absence of AMPA/kainate receptor activity. J Neurosci 18: 3725–3737

    PubMed  CAS  Google Scholar 

  • Mann F, Ray S, Harris W and Holt C (2002). Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands. Neuron 35: 461–473

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Lubke J, Frotscher M and Sakmann B (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275: 213–215

    Article  PubMed  CAS  Google Scholar 

  • Papke RL, Bencherif M and Lippiello P (1996). An evaluation of neuronal nicotinic acetylcholine receptor activation by quaternary nitrogen compounds indicates that choline is selective for the alpha 7 subtype. Neurosci Lett 213: 201–204

    PubMed  CAS  Google Scholar 

  • Renteria RC and Constantine-Paton M (1999). Nitric oxide in the retinotectal system: a signal but not a retrograde messenger during map refinement and segregation. J Neurosci 19: 7066–7076

    PubMed  CAS  Google Scholar 

  • Rubin JE, Gerkin RC, Bi GQ and Chow CC (2005). Calcium time course as a signal for spike-timing-dependent plasticity. J Neurophysiol 93: 2600–2613

    Article  PubMed  Google Scholar 

  • Rybicka KK and Udin SB (2005). Connections of isthmotectal axons and GABA-immunoreactive neurons in Xenopus tectum: an ultrastructural study. Vis Neurosci 22: 305–315

    Article  PubMed  Google Scholar 

  • Sargent PB, Pike SH, Nadel DB and Lindstrom JM (1989). Nicotinic acetylcholine receptor-like molecules in the retina, retinotectal pathway, and optic tectum of the frog. J Neurosci 9: 565–573

    PubMed  CAS  Google Scholar 

  • Sawtell NB, Frenkel MY, Philpot BD, Nakazawa K, Tonegawa S and Bear MF (2003). NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38: 977–985

    Article  PubMed  CAS  Google Scholar 

  • Scherer WJ and Udin SB (1989). phN-methyl-d-aspartate antagonists prevent interaction of binocular maps in Xenopus tectum. J Neurosci 9: 3837–3843

    PubMed  CAS  Google Scholar 

  • Scherer WJ and Udin SB (1991). Latency and temporal overlap of visually-elicited contralateral and ipsilateral firing in Xenopus tectum during and after the critical period. Dev Brain Res 58: 129–132

    Article  CAS  Google Scholar 

  • Schmidt JT, Fleming MR and Leu B (2004). Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening. J Neurobiol 58: 328–340

    Article  PubMed  CAS  Google Scholar 

  • Titmus MJ, Lima R, Tsai H-J and Udin SB (1999). Effects of choline and other nicotinic agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study. Neuroscience 91: 753–769

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano GG and Nelson SB (2004). Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5: 97–107

    Article  PubMed  CAS  Google Scholar 

  • Udin SB and Fisher MD (1985). The development of the nucleus isthmi in Xenopus laevis: I. Cell genesis and formation of connections with the tecta. J Comp Neurol 232: 25–35

    Article  PubMed  CAS  Google Scholar 

  • Udin SB and Grant S (1999). Plasticity in the tectum of Xenopus laevis: binocular maps. Prog Neurobiol 59: 81–106

    Article  PubMed  CAS  Google Scholar 

  • Udin SB and Scherer WJ (1990). Restoration of the plasticity of binocular maps by NMDA after the critical period in Xenopus. Science 249: 669–672

    Article  PubMed  CAS  Google Scholar 

  • Udin SB, Fisher MD and Norden JJ (1992). Isthmotectal axons make ectopic synapses in monocular regions of the tectum in developing Xenopus laevis frogs. J Comp Neurol 322: 461–470

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Malinow R and Cline HT (1996). Maturation of a central glutamatergic synapse. Science 274: 972–976

    Article  PubMed  CAS  Google Scholar 

  • Yamamura HI and Snyder SH (1972). Choline: high-affinity uptake by rat brain synaptosomes. Science 178: 626–628

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Zhao B, Butt CM and Debski EA (2006). Nicotine exposure refines visual map topography through an NMDA receptor-mediated pathway. Eur J Neurosci 24: 3026–3042

    Article  PubMed  Google Scholar 

  • Yoshii A, Sheng MH and Constantine-Paton M (2003). Eye opening induces a rapid dendritic localization of PSD-95 in central visual neurons. Proc Natl Acad Sci USA 100: 1334–1339

    Article  PubMed  CAS  Google Scholar 

  • Zhang LI, Tao HW, Holt CE, Harris WA and Poo M-m (1998). A critical window for cooperation and competition among developing retinotectal synapses. Nature 395: 37–44

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan B. Udin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Udin, S.B. The instructive role of binocular vision in the Xenopus tectum. Biol Cybern 97, 493–503 (2007). https://doi.org/10.1007/s00422-007-0188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0188-7

Keywords

Navigation