Skip to main content
Log in

A unified probabilistic model of the perception of three-dimensional structure from optic flow

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Human observers can perceive the three- dimensional (3-D) structure of their environment using various cues, an important one of which is optic flow. The motion of any point’s projection on the retina depends both on the point’s movement in space and on its distance from the eye. Therefore, retinal motion can be used to extract the 3-D structure of the environment and the shape of objects, in a process known as structure-from-motion (SFM). However, because many combinations of 3-D structure and motion can lead to the same optic flow, SFM is an ill-posed inverse problem. The rigidity hypothesis is a constraint supposed to formally solve the SFM problem and to account for human performance. Recently, however, a number of psychophysical results, with both moving and stationary human observers, have shown that the rigidity hypothesis alone cannot account for human performance in SFM tasks, but no model is known to account for the new results. Here, we construct a Bayesian model of SFM based mainly on one new hypothesis, that of stationarity, coupled with the rigidity hypothesis. The predictions of the model, calculated using a new and powerful methodology called Bayesian programming, account for a wide variety of experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cornilleau-Pérès V, Wexler M, Droulez J, Marin E, Miège C and Bourdoncle B (2002). Visual perception of planar orientation: dominance of static depth cues over motion cues. Vision Res 42: 1403–1412

    Article  PubMed  Google Scholar 

  2. Dijkstra T, Cornilleau-Pérès V, Gielen C and Droulez J (1995). Perception of three-dimensional shape from ego- and object-motion: comparison between small- and large-field stimuli. Vision Res 35(4): 453–462

    Article  PubMed  CAS  Google Scholar 

  3. Domini F and Braunstein M (1998). Recovery of 3-D structure from motion is neither Euclidean nor affine. J Exp Psychol Hum Percept Perform 24(4): 1273–1295

    Article  Google Scholar 

  4. Domini F and Caudek C (1999). Perceiving surface slant from deformation of optic flow. J Exp Psychol Hum Percept Perform 25(2): 426–444

    Article  PubMed  CAS  Google Scholar 

  5. Domini F and Caudek C (2003). 3-D structure perceived from dynamic information: a new theory. Trends Cogn Sci 7(10): 444–449

    Article  PubMed  Google Scholar 

  6. Ernst M and Banks M (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870): 429–433

    Article  PubMed  CAS  Google Scholar 

  7. Kersten D, Mamassian P and Yuille A (2004). Object perception as Bayesian inference. Annu Rev Psychol 55: 271–304

    Article  PubMed  Google Scholar 

  8. Koenderik J (1986). Optic flow. Vision Res 26(1): 161–179

    Article  Google Scholar 

  9. Landy M, Maloney L, Johnston E and Young M (1995). Measurement and modeling of depth cue combination: in defense of weak fusion. Vision Res 35: 389–412

    Article  PubMed  CAS  Google Scholar 

  10. Lebeltel O, Bessière P, Diard J, Mazer E (2004) Bayesian robot programming. Adv Robot 16(1):49–79. http://emotion.inrialpes.fr/bibemotion/2004/LBDM04/

    Google Scholar 

  11. Longuet-Higgins H (1984). The visual ambiguity of a moving plane. Proc R Soc Lond (B Biol Sci) 223: 165–175

    Article  CAS  Google Scholar 

  12. Mayhew J and Longuet-Higgins H (1982). A computational model of binoculard depth perception. Nature 297(5865): 376–378

    Article  PubMed  CAS  Google Scholar 

  13. Naji J and Freeman T (2004). Perceiving depth order during pursuit eye movement. Vision Res 44: 3025–3034

    Article  PubMed  Google Scholar 

  14. Rogers B and Graham M (1979). Motion parallax as an independent cue for depth perception. Perception 8: 125–134

    Article  PubMed  CAS  Google Scholar 

  15. Rogers B and Rogers S (1992). Visual and nonvisual information disambiguate surfaces specified by motion parallax. Percept Psychophys 52: 446–452

    PubMed  CAS  Google Scholar 

  16. Todd J and Bressan P (1990). The perception of 3-dimensional affine structure from minimal apparent motion sequences. Percept Psychophys 45(5): 419–430

    Google Scholar 

  17. Todd J and Norman J (1991). The visual perception of smoothly curved surfaces from minimal apparent motion sequences. Percept Psychophys 50(6): 509–523

    PubMed  CAS  Google Scholar 

  18. Ullman S (1979). The interpretation of visual motion. MIT Press, Cambridge

    Google Scholar 

  19. van Boxtel J, Wexler M, Droulez J (2003) Perception of plane orientation from self-generated and passively observed optic flow. J Vis 3(5):318–332. http://journalofvision.org/3/5/1/

    Google Scholar 

  20. Helmholtz H (1867). Handbuch der Physiologischen Optik. Voss, Hamburg

    Google Scholar 

  21. Wallach H and O’Connell D (1953). The kinetic depth effect. J Exp Psychol 45: 205–217

    Article  PubMed  CAS  Google Scholar 

  22. Wallach H, Stanton J and Becker D (1974). The compensation for movement-produced changes in object orientation. Percept Psychophys 15: 339–343

    Google Scholar 

  23. Weiss Y, Simoncelli E and Adelson E (2002). Motion illusions as optimal percepts. Nat Neurosci 5(6): 508–510

    Article  CAS  Google Scholar 

  24. Wexler M (2003). Voluntary head movement and allocentric perception of space. Psychol Sci 14: 340–346

    Article  PubMed  Google Scholar 

  25. Wexler M, Lamouret I and Droulez J (2001a). The stationarity hypothesis: an allocentric criterion in visual perception. Vision Res 41: 3023–3037

    Article  PubMed  CAS  Google Scholar 

  26. Wexler M, Panerai F, Lamouret I and Droulez J (2001b). Self-motion and the perception of stationary objects. Nature 409: 85–88

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Colas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colas, F., Droulez, J., Wexler, M. et al. A unified probabilistic model of the perception of three-dimensional structure from optic flow. Biol Cybern 97, 461–477 (2007). https://doi.org/10.1007/s00422-007-0183-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0183-z

Keywords

Navigation