Skip to main content
Log in

Geometry of the superior colliculus mapping and efficient oculomotor computation

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Numerous brain regions encode variables using spatial distribution of activity in neuronal maps. Their specific geometry is usually explained by sensory considerations only. We provide here, for the first time, a theory involving the motor function of the superior colliculus to explain the geometry of its maps. We use six hypotheses in accordance with neurobiology to show that linear and logarithmic mappings are the only ones compatible with the generation of saccadic motor command. This mathematical proof gives a global coherence to the neurobiological studies on which it is based. Moreover, a new solution to the problem of saccades involving both colliculi is proposed. Comparative simulations show that it is more precise than the classical one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson R, Keller E, Gandhi N, Das S (1998) Two-dimensional saccade-related population activity in superior colliculus in monkey. J Neurophysiol 80(2):798–817

    PubMed  CAS  Google Scholar 

  • Arai K, Keller E, Edelman J (1994) Two-dimensional neural network model of the primate saccadic system. Neural Netw 7:1115–1135

    Article  Google Scholar 

  • Arai K, Das S, Keller E, Aiyoshi E (1999) A distributed model of the saccade system: simulations of temporally perturbed saccades using position and velocity feedback. Neural Netw 12(10):1359–1375

    Article  PubMed  Google Scholar 

  • Badler J, Keller E (2002) Decoding of a motor command vector from distributed activity in superior colliculus. Biol Cybern 86(3): 179–189

    Article  PubMed  Google Scholar 

  • Bourbaki N (1972) Groupes et algèbres de Lie, Chapitres 2 et 3. Dunod, Paris

    Google Scholar 

  • Dräger U, Hugel D (1976) Topography of visual and somatosensory projections to mouse superior colliculus. J Neurophysiol 39:91–101

    PubMed  Google Scholar 

  • Feldon S, Feldon P, Kruger L (1970) Topography of the retinal projection upon the superior colliculus of the cat. Vision Res 10:135–143

    Article  PubMed  CAS  Google Scholar 

  • Girard B, Berthoz A (2005) From brainstem to cortex: computational models of saccade generation circuitry. Prog Neurobiol 77:215–251

    PubMed  CAS  Google Scholar 

  • van Gisbergen J, van Opstal A, Tax A (1987) Collicular ensemble coding of saccades based on vector summation. Neuroscience 21(2):541–555

    Article  PubMed  Google Scholar 

  • Goffart L, Pélisson D (1998) Orienting gaze shifts during muscimol inactivation of caudal fastigial nucleus in the cat. I. Gaze dysmetria. J Neurophysiol 79:1942–1958

    PubMed  CAS  Google Scholar 

  • Goossens H, van Opstal A (2000) Blink-perturbed saccades in monkey. II. superior colliculus activity. J Neurophysiol 83:3430–3452

    PubMed  CAS  Google Scholar 

  • Goossens H, van Opstal A (2006) Dynamic ensemble coding of saccades in the monkey superior colliculus. J Neurophysiol 95:2326–2341

    Article  PubMed  CAS  Google Scholar 

  • Grantyn A, Moschovakis A (2003) Structure–function relationships in the superior colliculus of higher mammals. In: Hall W, Moschovakis V (eds) The superior colliculus: new approaches for studying sensorimotor integration, methods & new frontiers in neuroscience, chap 5. CRC Press, Boca Raton, pp 107–145

    Google Scholar 

  • Grantyn A, Brandi AM, Dubayle D, Graf W, Ugolini G, Hadjidimitrakis K, Moschovakis A (2002) Density gradients of trans-synaptically labeled collicular neurons after injections of rabbies virus in the lateral rectus muscle of the rhesus monkey. J Comp Neurol 451:346–361

    Article  PubMed  Google Scholar 

  • Groh J (2001) Converting neural signals from place codes to rate codes. Biol Cybern 85(3):159–165

    Article  PubMed  CAS  Google Scholar 

  • Herrero L, Rodríguez F, Salas C, Torres B (1998) Tail and eye movememnts evoked by electrical microstimulation of the optic tectum in goldfish. Exp Brain Res 120:291–05

    Article  PubMed  CAS  Google Scholar 

  • Hirsch H (1976) Differential topology. Springer, New York

    Google Scholar 

  • Hörmander L (1983) The Analysis of linear partial differential operators I. No 256. In: Grundlehren der mathematischen Wissenschaften. Springer, Berlin

    Google Scholar 

  • Iwamoto Y, Yoshida K (2002) Saccadic dysmetria following inactivation of the primate fastigial oculomotor region. Neurosci Lett 325:211–215

    Article  PubMed  CAS  Google Scholar 

  • Kaneko C, Evinger C, Fuchs A (1981) Role of the cat pontine burst neurons in generation of saccadic eye movements. J Neurophysiol 46(3):387–408

    PubMed  CAS  Google Scholar 

  • Keller E (1974) Participation of medial pontine reticular formation in eye movement generation in monkey. J Neurophysiol 37(2): 316–332

    PubMed  CAS  Google Scholar 

  • King W, Fuchs F (1979) Reticular control of vertical saccadic eye movements by mesencephalic burst neurons. J Neurophysiol 42(3): 861–876

    PubMed  CAS  Google Scholar 

  • Knudsen E (1982) Auditory and visual maps of space in the optic tectum of the owl. J Neurosci 2(9):1177–1194

    PubMed  CAS  Google Scholar 

  • Lee C, Rohrer W, Sparks D (1988) Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332: 357–360

    Article  PubMed  CAS  Google Scholar 

  • McIlwain J (1976) Large receptive fields and spatial transformations in the visual system. In: Porter R (eds) Neurophysiology II, Int Rev Physiol, vol 10. University Park Press, Baltimore, pp 223–248

    Google Scholar 

  • McIlwain J (1983) Representation of the visual streak in visuotopic maps of the cat’s superior colliculus: influence of the mapping variable. Vision Res 23(5):507–516

    Article  PubMed  CAS  Google Scholar 

  • Moschovakis A, Kitama T, Dalezios Y, Petit J, Brandi A, Grantyn A (1998) An anatomical substrate for the spatiotemporal transformation. J Neurosci 18(23):10219–10229

    PubMed  CAS  Google Scholar 

  • Munoz D, Waitzman D, Wurtz R (1996) Activity of neurons in monkey superior colliculus during interrupted saccades. J Neurphysiol 75(6):2562–2580

    CAS  Google Scholar 

  • Olivier E, Porter J, May P (1998) Comparison of the distribution and somatodendritic morphology of tectotecal neurons in the cat and monkey. Vis Neurosci 15:903–922

    Article  PubMed  CAS  Google Scholar 

  • van Opstal A, van Gisbergen J (1989) A nonlinear model for collicular spatial interactions underlying the metrical properties of electrically elicited saccades. Biol Cybern 60(3):171–183

    Article  PubMed  Google Scholar 

  • Optican L (2005) Sensorimotor transformation for visually guided saccades. Ann NY Acad Sci 1039:132–148

    Article  PubMed  Google Scholar 

  • Ottes F, van Gisbergen JA, Eggermont J (1986) Visuomotor fields of the superior colliculus: a quantitative model. Vision Res 26(6): 857–873

    Article  PubMed  CAS  Google Scholar 

  • Robinson D (1972) Eye movements evoked by collicular stimulation in the alert monkey. Vision Res 12:1795–1808

    Article  PubMed  CAS  Google Scholar 

  • Rosa M, Schmid L (1994) Topography and extent of visual-field representation in the superior colliculus of the megachiropteran Pteropus. Vis Neurosci 11:1037–1057

    Article  PubMed  CAS  Google Scholar 

  • Schwarz E (1980) Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding. Vision Res 20:645–669

    Article  Google Scholar 

  • Siminoff R, Schwassmann H, Kruger L (1966) An electrophysiological study of the visual projection to the superior colliculus of the rat. J Comp Neurol 127:435–444

    Article  PubMed  CAS  Google Scholar 

  • Soetedjo R, Kaneko C, Fuchs A (2000) Evidence that the superior colliculus participates in the feedback control of saccadic eye movements. J Neurophysiol 87:679–695

    Google Scholar 

  • Sparks D, Holland R, Guthrie B (1976) Size and distribution of movement fields in the monkey superior colliculus. Brain Res 113:21–34

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, McCrea R, Berthoz A, Vidal P (1982) Morphological and physiological characteristics of inhibitory burst neurons controlling horizontal rapid eye movements in the alert cat. J Neurophysiol 48(3):761–784

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Girard.

Additional information

This work is partly supported by the EU within the NEUROBOTICS integrated Project (The fusion of NEUROscience and roBOTICS, FP6-IST-FET-2003no. 001917).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabareau, N., Bennequin, D., Berthoz, A. et al. Geometry of the superior colliculus mapping and efficient oculomotor computation. Biol Cybern 97, 279–292 (2007). https://doi.org/10.1007/s00422-007-0172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0172-2

Keywords

Navigation