Skip to main content
Log in

Branching dendrites with resonant membrane: a “sum-over-trips” approach

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Dendrites form the major components of neurons. They are complex branching structures that receive and process thousands of synaptic inputs from other neurons. It is well known that dendritic morphology plays an important role in the function of dendrites. Another important contribution to the response characteristics of a single neuron comes from the intrinsic resonant properties of dendritic membrane. In this paper we combine the effects of dendritic branching and resonant membrane dynamics by generalising the “sum-over-trips” approach (Abbott et al. in Biol Cybernetics 66, 49–60 1991). To illustrate how this formalism can shed light on the role of architecture and resonances in determining neuronal output we consider dual recording and reconstruction data from a rat CA1 hippocampal pyramidal cell. Specifically we explore the way in which an I h current contributes to a voltage overshoot at the soma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott LF (1992) Simple diagrammatic rules for solving dendritic cable problems. Physica A 185:343–356

    Article  Google Scholar 

  • Abbott LF, Fahri E, Gutmann S (1991) The path integral for dendritic trees. Biol Cybern 66:49–60

    Article  PubMed  CAS  Google Scholar 

  • Butz EG, Cowan JD (1974) Transient potentials in dendritic systems of arbitrary geometry. Biophys J 14:661–689

    PubMed  CAS  Google Scholar 

  • Cao BJ, Abbott LF (1993) New computational method for cable theory problems. Biophys J 64:303–313

    Article  PubMed  CAS  Google Scholar 

  • Carnevale NT, Hines ML (2006) The NEURON Book. Cambridge University Press, London

    Google Scholar 

  • Cox SJ, Griffith BE (2001) Recovering quasi-active properties of dendritic neurons from dual potential recordings. J Comput Neurosci 11:95–110

    Article  PubMed  CAS  Google Scholar 

  • Cox SJ, Raol JH (2004) Recovering the passive properties of tapered dendrites from single and dual potential recordings. Math Biosci 190:9–37

    Article  PubMed  Google Scholar 

  • Evans JD, Kember GC, Major G (1992) Techniques for obtaining analytical solutions to the multi-cylinder somatic shunt cable model for passive neurons. Biophys J 63:350–365

    PubMed  CAS  Google Scholar 

  • Evans JD, Kember GC, Major G (1995) Techniques for the application of the analytical solutions to the multi-cylinder somatic shunt cable model for passive neurons. Math Biosci 125:1–50

    Article  PubMed  CAS  Google Scholar 

  • Häusser M (2001) Dendritic democracy. Curr Biol 11:R10–R12

    Article  PubMed  Google Scholar 

  • Hudspeth AJ, Lewis RS (1988) A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog, Rana Catesbeiana. J Physiol 400:275–297

    PubMed  CAS  Google Scholar 

  • Hutcheon B, Miura RM, Puil E (1996) Models of subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76: 698–714

    PubMed  CAS  Google Scholar 

  • Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222

    Article  PubMed  CAS  Google Scholar 

  • Johnson D, Magee JC, Colbert CM, Christie BR (1996) Active properties of neuronl dendrites. Ann Rev Neurosci 19:165–186

    Article  Google Scholar 

  • Koch C (1984) Cable theory in neurons with active, linearized membranes. Biol Cybern 50:15–33

    Article  PubMed  CAS  Google Scholar 

  • Koch C, Poggio T (1985) A simple algorithm for solving the cable equation in dendritic geometries of arbitrary geometry. J Neurosci Methods 12:303–315

    Article  PubMed  CAS  Google Scholar 

  • Kole MHP, Hallermann S, Stuart GJ (2006) Single I h channels in pyramidal neuron dendrites: Properties, distribution, and impact on action potential output. J Neurosci 26(6):1677–1687

    Article  PubMed  CAS  Google Scholar 

  • Li X, Ascoli GA (2006) Computational simulation of the input–output relationship in hippocampal pyramidal cells. J Comput Neurosci 21:191–209

    Article  PubMed  Google Scholar 

  • London M, Häusser M (2005) Dendritic computation. Annu Rev Neurosci 28:503–532

    Article  PubMed  CAS  Google Scholar 

  • London M, Meunier C, Segev I (1999) Signal transfer in passive dendrites with nonuniform membrane conductance. J Neurosci 19:8219–8233

    PubMed  CAS  Google Scholar 

  • Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18:7613–7624

    PubMed  CAS  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366

    Article  PubMed  CAS  Google Scholar 

  • Mauro A, Conti F, Dodge F, Schor R (1970) Subthreshold behavior and phenomenological impedance of the squid giant axon. J Gen Physiol 55:497–523

    Article  PubMed  CAS  Google Scholar 

  • Migliore M, Ferrante M, Ascoli GA (2005) Signal propagation in oblique dendrites of CA1 pyramidal cells. J Neurophysiol 94:4145–4155

    Article  PubMed  Google Scholar 

  • van Ooyen A, Duijnhouwer J, Remme MWH, van Pelt J (2002) The effect of dendritic topology on firing patterns in model neurons. Network 13:311–325

    Article  PubMed  Google Scholar 

  • Pape HC (1996) Queer current and pacemaker: the hyperpolarization activated cation current in neurons. Annu Rev Physiol 58:299–327

    Article  PubMed  CAS  Google Scholar 

  • Scott A (2002) Neuroscience: a mathematical primer. Springer, Heidelberg

    Google Scholar 

  • Segev I, London M (2000) Untangling dendrites with quantitative models. Science 290:744–750

    Article  PubMed  CAS  Google Scholar 

  • Segev I, Rinzel J, Shepherd GM (eds) (1995) The theoretical foundations of dendritic function: selected papers of Wilfrid Rall with commentaries. MIT Press, Cambridge

    Google Scholar 

  • Stuart G, Spruston N, Häusser M. (eds.) (1999) Dendrites. Oxford University Press, New York

    Google Scholar 

  • Timofeeva Y, Lord GJ, Coombes S (2006) Dendritic cable with active spines: a modeling study in the spike-diffuse spike framework. Neurocomputing 69:1058–1061

    Article  Google Scholar 

  • Timofeeva Y, Lord GJ, Coombes S (2006) Spatio-temporal filtering properties of a dendritic cable with active spines. J Comput Neurosci 21:293–306

    Article  PubMed  Google Scholar 

  • Tuckwell HC (1988) Introduction to theoretical neurobiology, vol 1. Cambridge University Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Coombes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coombes, S., Timofeeva, Y., Svensson, C.M. et al. Branching dendrites with resonant membrane: a “sum-over-trips” approach. Biol Cybern 97, 137–149 (2007). https://doi.org/10.1007/s00422-007-0161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0161-5

Keywords

Navigation