Skip to main content
Log in

A model of open-loop control of equilibrium position and stiffness of the human elbow joint

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

According to the equilibrium point theory, the control of posture and movement involves the setting of equilibrium joint positions (EP) and the independent modulation of stiffness. One model of EP control, the α-model, posits that stable EPs and stiffness are set open-loop, i.e. without the aid of feedback. The purpose of the present study was to explore for the elbow joint the range over which stable EPs can be set open-loop and to investigate the effect of co-contraction on intrinsic low-frequency elbow joint stiffness (K ilf). For this purpose, a model of the upper and lower arm was constructed, equipped with Hill-type muscles. At a constant neural input, the isometric force of the contractile element of the muscles depended on both the myofilamentary overlap and the effect of sarcomere length on the sensitivity of myofilaments to [Ca2+] (LDCS). The musculoskeletal model, for which the parameters were chosen carefully on the basis of physiological literature, captured the salient isometric properties of the muscles spanning the elbow joint. It was found that stable open-loop EPs could be achieved over the whole range of motion of the elbow joint and that K ilf, which ranged from 18 to 42 N m·rad−1, could be independently controlled. In the model, LDCS contributed substantially to K ilf (up to 25 N m·rad−1) and caused K ilf to peak at a sub-maximal level of co-contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

K ilf :

Intrinsic low-frequency joint stiffness

MEF:

Mono-articular elbow flexor

BE:

Bi-articular elbow extensor

STIM:

Muscle stimulation

q :

Active state

φe :

Elbow angle

φe :

Shoulder angle

CE:

Contractile element

SE:

Series elastic element

PE:

Parallel elastic element

F CE :

Force delivered by CE

F MAX :

Maximum isometric force

F isomn :

F CE / F MAX

l MTC :

Muscle-tendon complex length

l CE :

CE length

l CE_opt :

CE optimum length

l CE_rel :

l CE /l CE_opt

l PE :

PE length

l PE_0 :

PE slack length

l SE :

SE length

l SE_0 :

SE slack length

References

  • Agarwal GC, Gottlieb GL (1977) Oscillation of the human ankle joint in response to applied sinusoidal torque on the foot. J Physiol 268(1):151–176

    PubMed  CAS  Google Scholar 

  • An KN, Kaufman KR, Chao EY (1989) Physiological considerations of muscle force through the elbow joint. J Biomech 22(11–12):1249–1256

    Article  PubMed  CAS  Google Scholar 

  • Balnave CD, Allen DG (1996) The effect of muscle length on intracellular calcium and force in single fibres from mouse skeletal muscle. J Physiol 492 (Pt 3):705–713

    PubMed  CAS  Google Scholar 

  • Bennet DJ, Hollerbach JM, Xu Y, Hunter IW (1992) Time-varying stiffness of human elbow joint during cyclic voluntary movement. Exp Brain Res 88:433–442

    Article  Google Scholar 

  • Bizzi E, Abend W (1983) Posture control and trajectory formation in single- and multi-joint arm movements. Adv Neurol 39:31–45

    PubMed  CAS  Google Scholar 

  • Bullock D, Contreras-Vidal JL (1993) How spinal neural networks reduce discrepancies between motor intention and motor realization. In: Newell KM, Corcos DM (eds), Variability and motor Control. Human Kinetics Publishers, Champaign, pp 183–221

    Google Scholar 

  • Chang Y, Su F, Wu H, An K (1999) Optimum length of muscle contraction. Clin Biomech 14:537–542

    Article  CAS  Google Scholar 

  • Ebashi S, Endo M (1968) Calcium ion and muscular contraction. Prog Biophys Mol Biol 18:125–138

    Google Scholar 

  • Flash T (1987) The control of hand equilibrium trajectories in multi-joint arm movements. Biol Cybern 57:257–274

    Article  PubMed  CAS  Google Scholar 

  • Endo M (1972) Stretch-induced increase in activation of skinned muscle fibres by calcium. Nature New Biol 237:211–213

    Article  PubMed  CAS  Google Scholar 

  • Endo M (1973) Length dependence of activation of skinned muscle fibres by calcium. Spring Harb Symp Quant Biol 37:505–510

    CAS  Google Scholar 

  • Giszter SF, Mussa-Ivaldi FA, Bizzi E (1993) Convergent force fields organized in the frog’s spinal chord. J Neurosci 13(2):467–491

    PubMed  CAS  Google Scholar 

  • Gomi H, Kawato M (1997) Human arm stiffness and equilibrium- point trajectory during multi-joint movement. Biol Cybern 76(3):163–171

    Article  PubMed  CAS  Google Scholar 

  • Gomi H, Osu R (1998) Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments. J Neurosci 18(21):8965–8978

    PubMed  CAS  Google Scholar 

  • Graziano MSA, Taylor CSR, Moore T (2002) Complex movements evoked by microstimulation of precentral cortex. Neuron 34:841–851

    Article  PubMed  CAS  Google Scholar 

  • Grieve DW, Pheasant S, Cavanagh PR (1978) Prediction of gastrocnemius length from knee and ankle joint posture. In: E, Jorgensen K (eds), Biomechanics VI-A, International Series on Biomechanics, vol. 2A, University Park Press, Baltimore, pp 405–412

  • Hansen EA, Lee HD, Barrett K, Herzog W (2003) The shape of the force–elbow angle relationship for maximal voluntary contractions and sub-maximal electrically induced contractions in human elbow flexors. J Biomech 36(11): 1713–1718

    Article  PubMed  Google Scholar 

  • Hatze H (1981) Myocybernetic control models of skeletal muscle. University of South Africa, Pretoria, pp 31–42

    Google Scholar 

  • Hogan N (1984) An organizing principle for a class of voluntary movements. J Neurosci 4(11):2745–2754

    PubMed  CAS  Google Scholar 

  • Hunter IW, Kearney RE (1982) Dynamics of human ankle stiffness: variation with mean ankle torque. J Biomech 15(10): 747–752

    Article  PubMed  CAS  Google Scholar 

  • Kearney RE, Stein RB, Parameswaran L (1997). Identification of intrinsic and reflex contributions to human ankle stiffness dynamics. IEEE Trans Biomed Eng 44(6):493–504

    Article  PubMed  CAS  Google Scholar 

  • Kistemaker DA, Van Soest AK, Bobbert MF (2005) Length-dependent [Ca2+] sensitivity adds stiffness to muscle. J Biomech 38(9):1816–1821

    Article  PubMed  Google Scholar 

  • Kistemaker DA, Van Soest AJ, Bobbert MF (2006) Is equilibrium point control feasible for fast goal-directed single-joint movements? J Neurophysiol 95:2898–3012

    Article  PubMed  Google Scholar 

  • Konhillas JP, Irving TC, Tombe PP (2002) Length-dependent activation in three striated muscle types of the rat. J Physiol 544(1):225–236

    Article  Google Scholar 

  • Kullig K, Andrews JG, Hay JG (1984) Human strength curves. Exerc Sport Sci Rev 12:417–466

    Article  Google Scholar 

  • Lacquaniti F, Licata F, Soechting JF (1982) The mechanical behavior of the human forearm in response to transient perturbations. Biol Cybern 44(1):35–46

    Article  PubMed  CAS  Google Scholar 

  • Lacquaniti F, Carrozzo M, Borghese NA (1993) Time-varying mechanical behavior of multijointed arm in man. J 69(5):1443–1464

    CAS  Google Scholar 

  • Latash ML, Zatsiorsky VM (1993) Joint stiffness: myth or reality?. Hum Mov Sci 12:653–692

    Article  Google Scholar 

  • MacKay WA, Crammond DJ, Kwan HC, Murphy JT (1986) Measurements of human forearm viscoelasticity. J Biomech 19(3):231–238

    Article  PubMed  CAS  Google Scholar 

  • McDonald KS, Wolff MR, Moss RL (1997) Sarcomere length dependence of the rate of tension redevelopment and tension in rat and rabbit skinned skeletal muscle fibres. J Physiol 501(3):607–621

    Article  PubMed  CAS  Google Scholar 

  • Milner TE (2002) Contribution of geometry and joint stiffness to mechanical stability of the human arm. Exp Brain Res 143:515–519

    Article  PubMed  Google Scholar 

  • Murray WM, Delp SL, Buchanan TS (1995) Variation of muscle moment arms with elbow and forearm position. J Biomech 28(5):513–525

    Article  PubMed  CAS  Google Scholar 

  • Murray WM, Buchanan TS, Delp SL (2000) The isometric functional capacity of muscles that cross the elbow. J Biomech 33(8):943–952

    Article  PubMed  CAS  Google Scholar 

  • Mussa-Ivaldi FA, Hogan N, Bizzi E (1985) Neural, mechanical and geometric factors subserving arm posture in humans. J Neurosci 5:2732–2743

    PubMed  CAS  Google Scholar 

  • Nijhof E, Kouwenhoven E (2000) Simulation of multijoint arm movements. In: Winters J, Grago P (eds), Biomechanics and neural control of posture and movement. Springer, Berlin New York, pp 363–372

    Google Scholar 

  • Osu R, Gomi H (1999) Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals. J Neurophysiol 81(4):1458–1468

    PubMed  CAS  Google Scholar 

  • Patel JR, McDonald KS, Wolff MR, Moss RL (1997) Ca2+ binding to troponine C in skinned skeletal muscle fibres assessed with caged Ca2+ and a Ca2+ fluorophore. J Biol Chem 28:6018–6027

    Google Scholar 

  • Popescu F, Hidler JM, Rymer WZ (2003) Elbow impedance during goal-directed movements. Exp Brain Res 152(1):17–28

    Article  PubMed  Google Scholar 

  • Roszek B, Baan GC, Huijing PA (1994) Decreasing stimulation frequency-dependent length-force characteristics of rat muscle. J Appl Physiol 77(5):2115–2124

    PubMed  CAS  Google Scholar 

  • Shadmehr R, Arbib MA (1992) A mathematical analysis of the force-stiffness characteristics of muscles in control of a single joint system. Biol Cybern 66(6):463–477

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Karpovitch VK (1968) Strength of forearm flexors and extensors in men and woman. J Physiol 25(2):177–180

    CAS  Google Scholar 

  • Stephenson DG, Williams DA (1982) Effects of sarcomere length on the force–pCa relation in fast- and slow-twitch skinned muscle fibres from the rat. J Physiol 333:637–653

    PubMed  CAS  Google Scholar 

  • Tehovnik EJ (1995) The dorsomedial frontal cortex: eye and forelimb fields. Behav Brain Res 67(2):147–163

    Article  PubMed  CAS  Google Scholar 

  • Van der Helm FC, Schouten AC, De Vlugt E, Brouwn GG (2002) Identification of intrinsic and reflexive components of human arm dynamics during postural control. J Neurosci Methods 119(1):1–14

    Article  Google Scholar 

  • Van Soest AJ, Bobbert MF (1993) The contribution of muscle properties in the control of explosive movements. Biol 69:195–204

    CAS  Google Scholar 

  • Van Zuylen EJ, Van Velzen A, Denier van der Gon JJ (1988) A biomechanical model for flexion torques of human arm muscles as a function of elbow angle. J Biomech 21(3):183–190

    Article  PubMed  CAS  Google Scholar 

  • Winter DA (1990) Biomechanics and motor control of human movement. second edn. Wiley, New York

    Google Scholar 

  • Winters JM, Stark L (1987) Muscle models: what is gained and what is lost by varying model complexity. Biol Cybern 55(6):403–420

    Article  PubMed  CAS  Google Scholar 

  • Zhang LQ, Rymer WZ (1997) Simultaneous and nonlinear identification of mechanical and reflex properties of human elbow joint muscles. IEEE Trans Biomed Eng 44(12):1192–11209

    Article  PubMed  CAS  Google Scholar 

  • Zuurbier CJ, Lee-de Groot MB, Van der Laarse WJ, Huijing PA (1998) Effects of in vivo-like activation frequency on the length-dependent force generation of skeletal muscle fibre bundles. Eur J Appl Physiol Occup Physiol 77(6):503–510

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinant A. Kistemaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kistemaker, D.A., Van Soest, A.J.(. & Bobbert, M.F. A model of open-loop control of equilibrium position and stiffness of the human elbow joint. Biol Cybern 96, 341–350 (2007). https://doi.org/10.1007/s00422-006-0120-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0120-6

Keywords

Navigation