Skip to main content
Log in

Neuronal Network Models of Phase Separation Between Limb CPGs of Digging Sand Crabs

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Ordinary differential equations are used to model a peculiar motor behaviour in the anomuran decapod crustacean Emerita analoga. Little is known about the neural circuitry that permits E. analoga to control the phase relationships between movements of the fourth legs and pair of uropods as it digs into sand, so mathematical models might aid in identifying features of the neural structures involved. The geometric arrangement of segmental ganglia controlling the movements of each limb provides an intuitive framework for modelling. Specifically, due to the rhythmic nature of movement, the network controlling the fourth legs and uropods is viewed as three coupled identical oscillators, one dedicated to the control of each fourth leg and one for the pair of uropods, which always move in bilateral synchrony. Systems of Morris–Lecar equations describe the voltage and ion channel dynamics of neurons. Each central pattern generator for a limb is first modelled as a single neuron and then, more realistically as a multi-neuron oscillator. This process results in high-dimensional systems of equations that are difficult to analyse. In either case, reduction to phase equations by averaging yields a two-dimensional system of equations where variables describe only each oscillator’s phase along its limit cycle. The behaviour observed in the reduced equations approximates that of the original system. Results suggest that the phase response function in the two dimensional system, together with minimal input from asymmetric bilateral coupling parameters, is sufficient to account for the observed behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cattaert D, Barthe JY, Neil DM, Clarac F (1992) Remote control of the swimmeret central pattern generator in crayfish (Procambarus clarkii and Pacifistacus leniusculus): effect of a walking leg proprioceptor. J Exp Biol 169:181–206

    Google Scholar 

  • Ermentrout GB (2002) Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM, Philadelphia

    Google Scholar 

  • Ermentrout GB, Kopell N (1991) Multiple pulse interactions and averaging in systems of coupled neural oscillators. J Math Biol 29:195–217

    Article  Google Scholar 

  • Faulkes Z, Paul DH (1997a) Digging in sand crabs (Decapoda, Anomura, Hippoidea): interleg coordination. J Exp Biol 200:793–805

    Google Scholar 

  • Faulkes Z, Paul DH (1997b) Coordination between the legs and tail during digging and swimming in sand crabs. J Comp Physiol A 180:161–169

    Article  Google Scholar 

  • Fenichel N (1971) Persistence and smoothness of invariant manifolds for flows. Indiana Univ Math J 21:193–226

    Article  Google Scholar 

  • Friesen WO, Chang J (2001) Sensory and central mechanisms control intersegmental coordination. Curr Opin Neurobiol 11:678–683

    Article  PubMed  CAS  Google Scholar 

  • Golubitsky M, Stewart I (1985) Hopf Bifurcation in the presence of symmetry. Arch Rational Mech Anal 87:107–165

    Article  Google Scholar 

  • Golubitsky M, Stewart I (1986) Hopf bifurcation with dihedral group symmetry: coupled nonlinear oscillators. Contemp Math 56: 131–173

    Google Scholar 

  • Golubitsky M, Stewart I, Schaeffer DG (1985) Singularities and groups in bifurcation theory, vol 2. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Guckenheimer J, Holmes P (1997) Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hodge A (2003) Modeling central pattern generators in sand crabs. M.Sc. thesis, Department of Mathematics and Statistics, University of Victoria, Victoria

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    PubMed  CAS  Google Scholar 

  • Hooper SL, DiCaprio RA (2004) Crustacean motor pattern generator networks. Neurosignals 13:50–69

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich EM (2000) Phase equations for relaxation oscillators. SIAM J Appl Math 60:1789–1805

    Article  Google Scholar 

  • Kopell N, Ermentrout GB (1990) Phase transitions and other phenomena in chains of coupled oscillators. SIAM J Appl Math 50:1014–1052

    Article  Google Scholar 

  • Kopell N, Ermentrout GB, Williams TL (1991) On chains of oscillators forced at one end. SIAM J Appl Math 51:1397–1417

    Article  Google Scholar 

  • Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35:305–317

    Article  Google Scholar 

  • Mulloney B, Hall WM (2000) Functional organization of crayfish abdominal ganglia III Swimmeret motor neurons. J Comp Neurol 419:233–243

    Article  PubMed  CAS  Google Scholar 

  • Murchison D, Chrachiri A, Mulloney B (1993) A separate local pattern-generating circuit controls the movement of each swimmeret in crayfish. J Neurophysiol 70:2620–2631

    PubMed  CAS  Google Scholar 

  • Paul DH (1979) An endogenous motor program for sand crab uropods. J Neurobiol 10:273–289

    Article  PubMed  CAS  Google Scholar 

  • Paul DH (2004) Projection and local interneurons in the sixth abdominal ganglion of the sand crab Emerita analoga (Hippidae). J Comp Neurol 480:310–329

    Article  PubMed  Google Scholar 

  • Paul DH, Faulkes Z, Antonsen BL (2002) Synergies between disparate motor systems: loci for behavioural evolution. In: Wiese K (eds) Crustacean experimental systems in neurobiology. Springer, Berlin Heidelberg New York, pp 263–282

    Google Scholar 

  • Paul DH, Mulloney B (1985a) Local interneurons in the swimmeret system of the crayfish. J Comp Physiol A 156:489–502

    Article  Google Scholar 

  • Paul DH, Mulloney B (1985b) Nonspiking local interneuron in the motor pattern generator for the crayfish swimmeret. J Neurophysiol 54:28–39

    CAS  Google Scholar 

  • Paul DH, Mulloney B (1986) Intersegmental coordination of swimmeret rhythms in isolated nerve cords of crayfish. J Comp Physiol A 158:215–224

    Article  Google Scholar 

  • Rand RH, Holmes PJ (1980) Bifurcation of periodic motions in two weakly coupled van der Pol oscillators. J Non-Linear Mech 15:387–399

    Article  Google Scholar 

  • Skinner FK, Kopell N, Marder E (1994) Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. J Comput Neurosci 1:69–87

    Article  PubMed  CAS  Google Scholar 

  • Skinner FK, Kopell N, Mulloney B (1997) How does the crayfish swimmeret system work? Insights from nearest neighbour coupled oscillator models. J Comput Neurosci 4:151–160

    Article  PubMed  CAS  Google Scholar 

  • Skinner FK, Mulloney B (1998) Intersegmental coordination of limb movements during locomotion: Mathematical models predict circuits that drive swimmeret beating. J Neurosci 18:3831–3842

    PubMed  CAS  Google Scholar 

  • Skinner FK, Turrigiano GG, Marder E (1993) Frequency and burst duration in oscillating neurons and two cell networks. Biol Cybern 69:375–383

    PubMed  CAS  Google Scholar 

  • Tschulum N, Hall WM, Mulloney B (2001) Limb movements during locomotion: Test of a model of an intersegmental coordinating circuit. J Neurosci 21:7859–7869

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hodge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodge, A., Edwards, R., Paul, D.H. et al. Neuronal Network Models of Phase Separation Between Limb CPGs of Digging Sand Crabs. Biol Cybern 95, 55–68 (2006). https://doi.org/10.1007/s00422-006-0065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0065-9

Keywords

Navigation