Acute hormonal responses to heavy resistance exercise in younger and older men


The purpose of this investigation was to examine the acute responses of several hormones [total and free testosterone (TT and FT, respectively), adrenocorticotropic hormone (ACTH), cortisol (C), growth hormone (GH), and insulin (INS)] to a single bout of heavy resistance exercise (HRE). Eight younger [30-year (30y) group] and nine older [62-year (62y) group] men matched for general physical characteristics and activity levels performed four sets of ten repetitions maximum (RM) squats with 90 s rest between sets. Blood samples were obtained from each subject via an indwelling cannula with a saline lock pre-exercise, immediately post-exercise (IP), and 5, 15 and 30 min post-exercise. Levels of TT, FT, ACTH, C and lactate significantly increased after HRE for both groups. Pre-HRE pairwise differences between groups were noted only for FT, while post-HRE pairwise differences were found for TT, FT, GH, glucose and lactate. Area under the curve analysis showed that the 30y group had a significantly higher magnitude of increase over the entire recovery period (IP, 5, 15, and 30 min post-exercise) for TT, FT, ACTH and GH. Few changes occurred in the INS response with the only change being that the 62y group demonstrated a decrease IP. Lactate remained elevated at 30 min post-HRE. This investigation demonstrates that age-related differences occur in the endocrine response to HRE, and the most striking changes appear evident in the FT response to HRE in physically active young and older men.

This is a preview of subscription content, access via your institution.

Author information



Additional information

Accepted: 11 June 1997

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kraemer, W., Häkkinen, K., Newton, R. et al. Acute hormonal responses to heavy resistance exercise in younger and older men. Eur J Appl Physiol 77, 206–211 (1998).

Download citation

  • Key words Aging
  • Neuroendocrine
  • Resistance exercise
  • Growth factors