Skip to main content
Log in

Single skeletal muscle fiber mechanical properties: a muscle quality biomarker of human aging

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Skeletal muscle strength, mass, and function should be carefully monitored for signs of decline with advanced adult age. An understanding of the pathophysiology and severity of sarcopenia can be improved with the exploration of changes in muscle fiber properties. Furthermore, although functional decline with increase age is a well-known phenomenon, the mechanisms underlying this decline, and the features that characterize it, are complex and variable. The age-related decline of muscle function is a result of not only a decrease of muscle mass but also a decline in the intrinsic properties of muscle fibers that are independent of size. We believe it is important to understand changes in muscle quality (force adjusted for size), and not to focus solely on muscle mass, because muscle quality is closely related to measurements of function and could potentially predict clinical outcomes such as morbidity, disability, and mortality. Neurological and metabolic mechanisms contribute to muscle quality, but the intrinsic properties of muscle cells are central to the maintenance of force-generating capacity. Muscle quality can be evaluated with the assessment of morphological, physiological, and mechanical properties in single permeabilized or skinned fibers. This approach excludes the influence of the nervous system, tendons, and the extracellular matrix. In this review, we summarized the changes in active and passive mechanical properties at the single muscle cell level in older skeletal muscles. We argue that intrinsic mechanical changes in human single muscle fibers are useful biomarkers and indicators of muscle quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahima RS, Park HK (2015) Connecting myokines and metabolism. Endocrinol Metab (seoul) 30(3):235–245

    Article  CAS  Google Scholar 

  • Alcazar J, Alegre LM, Suetta C, Judice PB, Van Roie E, Gonzalez-Gross M, Rodriguez-Manas L, Casajus JA, Magalhães JP, Nielsen BR, Garcia-Garcia FJ, Delecluse C, Sardinha LB, Ara I (2021) Threshold of relative muscle power required to rise from a chair and mobility limitations and disability in older adults. Med Sci Sports Exerc 53(11):2217–2224

    Article  PubMed  Google Scholar 

  • Bean JF, Kiely DK, Herman S, Leveille SG, Mizer K, Frontera WR, Fielding RA (2002) The relationship between leg power and physical performance in mobility-limited older people. J Am Geriatr Soc 50(3):461–467

    Article  PubMed  Google Scholar 

  • Beyer I, Mets T, Bautmans I (2012) Chronic low-grade inflammation and age-related sarcopenia. Curr Opin Clin Nutr Metab Care 15(1):12–22

    Article  CAS  PubMed  Google Scholar 

  • Binder-Markey BI, Sychowski D, Lieber RL (2021) Systematic review of skeletal muscle passive mechanics experimental methodology. J Biomech 129:110839

    Article  PubMed  Google Scholar 

  • Borja-Gonzalez M, Casas-Martinez JC, McDonagh B, Goljanek-Whysall K (2020) Inflamma-miR-21 negatively regulates myogenesis during ageing. Antioxidants (basel) 9(4):345

    Article  CAS  PubMed Central  Google Scholar 

  • Brocca L, McPhee JS, Longa E, Canepari M, Seynnes O, De Vito G, Pellegrino MA, Narici M, Bottinelli R (2017) Structure and function of human muscle fibres and muscle proteome in physically active older men. J Physiol 595(14):4823–4844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown M, Fisher JS, Salsich G (1999) Stiffness and muscle function with age and reduced muscle use. J Orthop Res 17(3):409–414

    Article  CAS  PubMed  Google Scholar 

  • Brown JC, Harhay MO, Harhay MN (2016) The muscle quality index and mortality among males and females. Ann Epidemiol 26(9):648–653

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen SP, Sheu JR, Lin AC, Hsiao G, Fong TH (2005) Decline in titin content in rat skeletal muscle after denervation. Muscle Nerve 32(6):798–807

    Article  CAS  PubMed  Google Scholar 

  • Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, Jang HC, Kang L, Kim M, Kim S, Kojima T, Kuzuya M, Lee JSW, Lee SY, Lee WJ, Lee Y, Liang CK, Lim JY, Lim WS, Peng LN, Sugimoto K, Tanaka T, Won CW, Yamada M, Zhang T, Akishita M, Arai H (2020) Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc 21(3):300-307 e302

    Article  PubMed  Google Scholar 

  • Choi SJ, Lim JY (2012) Age-related changes in contractile properties and morphology on chemically skinned single fibers from young and old human skeletal muscles. Exerc Sci 21(3):309–318

    Article  Google Scholar 

  • Choi SJ, Shively CA, Register TC, Feng X, Stehle J, High K, Ip E, Kritchevsky SB, Nicklas B, Delbono O (2013) Force-generation capacity of single vastus lateralis muscle fibers and physical function decline with age in African green vervet monkeys. J Gerontol A Biol Sci Med Sci 68(3):258–267

    Article  CAS  PubMed  Google Scholar 

  • Christian CJ, Benian GM (2020) Animal models of sarcopenia. Aging Cell 19(10):e13223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correa-de-Araujo R, Harris-Love MO, Miljkovic I, Fragala MS, Anthony BW, Manini TM (2017) The need for standardized assessment of muscle quality in skeletal muscle function deficit and other aging-related muscle dysfunctions: a symposium report. Front Physiol 8:87

    Article  PubMed  PubMed Central  Google Scholar 

  • Correa-de-Araujo R, Addison O, Miljkovic I, Goodpaster BH, Bergman BC, Clark RV, Elena JW, Esser KA, Ferrucci L, Harris-Love MO, Kritchevsky SB, Lorbergs A, Shepherd JA, Shulman GI, Rosen CJ (2020) Myosteatosis in the context of skeletal muscle function deficit: an interdisciplinary workshop at the national institute on aging. Front Physiol 11:963

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M, P. Writing Group for the European Working Group on Sarcopenia in Older and E. the Extended Group for (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31

    Article  PubMed  Google Scholar 

  • Cuoco A, Callahan DM, Sayers S, Frontera WR, Bean J, Fielding RA (2004) Impact of muscle power and force on gait speed in disabled older men and women. J Gerontol A Biol Sci Med Sci 59(11):1200–1206

    Article  PubMed  Google Scholar 

  • Curtin NA, Diack RA, West TG, Wilson AM, Woledge RC (2015) Skinned fibres produce the same power and force as intact fibre bundles from muscle of wild rabbits. J Exp Biol 218(Pt 18):2856–2863

    PubMed  Google Scholar 

  • Dahlqvist JR, Vissing CR, Hedermann G, Thomsen C, Vissing J (2017) Fat replacement of paraspinal muscles with aging in healthy adults. Med Sci Sports Exerc 49(3):595–601

    Article  PubMed  Google Scholar 

  • D’Antona G, Pellegrino MA, Adami R, Rossi R, Carlizzi CN, Canepari M, Saltin B, Bottinelli R (2003) The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol 552(Pt 2):499–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degens H, Swaminathan A, Tallis J (2021) A high-fat diet aggravates the age-related decline in skeletal muscle structure and function. Exerc Sport Sci Rev 49(4):253–259

    Article  PubMed  Google Scholar 

  • Delbono O (2011) Expression and regulation of excitation-contraction coupling proteins in aging skeletal muscle. Curr Aging Sci 4(3):248–259

    Article  CAS  PubMed  Google Scholar 

  • Elder GC, Bradbury K, Roberts R (1982) Variability of fiber type distributions within human muscles. J Appl Physiol Respir Environ Exerc Physiol 53(6):1473–1480

    CAS  PubMed  Google Scholar 

  • Ferrucci L, Penninx BW, Volpato S, Harris TB, Bandeen-Roche K, Balfour J, Leveille SG, Fried LP, Md JM (2002) Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels. J Am Geriatr Soc 50(12):1947–1954

    Article  PubMed  Google Scholar 

  • Fielding RA, LeBrasseur NK, Cuoco A, Bean J, Mizer K, Fiatarone Singh MA (2002) High-velocity resistance training increases skeletal muscle peak power in older women. J Am Geriatr Soc 50(4):655–662

    Article  PubMed  Google Scholar 

  • Ford LE, Huxley AF, Simmons RM (1977) Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J Physiol 269(2):441–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frontera WR, Larsson L (1997) Contractile studies of single human skeletal muscle fibers: a comparison of different muscles, permeabilization procedures, and storage techniques. Muscle Nerve 20(8):948–952

    Article  CAS  PubMed  Google Scholar 

  • Frontera WR, Suh D, Krivickas LS, Hughes VA, Goldstein R, Roubenoff R (2000) Skeletal muscle fiber quality in older men and women. Am J Physiol Cell Physiol 279(3):C611-618

    Article  CAS  PubMed  Google Scholar 

  • Frontera WR, Hughes VA, Krivickas LS, Roubenoff R (2001) Contractile properties of aging skeletal muscle. Int J Sport Nutr Exerc Metab 11(Suppl):S16-20

    Article  PubMed  Google Scholar 

  • Frontera WR, Reid KF, Phillips EM, Krivickas LS, Hughes VA, Roubenoff R, Fielding RA (2008) Muscle fiber size and function in elderly humans: a longitudinal study. J Appl Physiol 105(2):637–642

    Article  PubMed  PubMed Central  Google Scholar 

  • Frontera WR, Zayas AR, Rodriguez N (2012) Aging of human muscle: understanding sarcopenia at the single muscle cell level. Phys Med Rehabil Clin N Am 23(1):201–207, xiii

    Article  PubMed  Google Scholar 

  • Gajdosik RL, Vander Linden DW, Williams AK (1999) Influence of age on length and passive elastic stiffness characteristics of the calf muscle-tendon unit of women. Phys Ther 79(9):827–838

    Article  CAS  PubMed  Google Scholar 

  • Galazzo L, Nogara L, LoVerso F, Polimeno A, Blaauw B, Sandri M, Reggiani C, Carbonera D (2019) Changes in the fraction of strongly attached cross bridges in mouse atrophic and hypertrophic muscles as revealed by continuous wave electron paramagnetic resonance. Am J Physiol Cell Physiol 316(5):C722–C730

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Kostrominova TY, Faulkner JA, Wineman AS (2008) Age-related changes in the mechanical properties of the epimysium in skeletal muscles of rats. J Biomech 41(2):465–469

    Article  PubMed  Google Scholar 

  • Gerstner GR, Thompson BJ, Rosenberg JG, Sobolewski EJ, Scharville MJ, Ryan ED (2017) Neural and muscular contributions to the age-related reductions in rapid strength. Med Sci Sports Exerc 49(7):1331–1339

    Article  PubMed  Google Scholar 

  • Granzier HL, Irving TC (1995) Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 68(3):1027–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granzier H, Labeit S (2007) Structure-function relations of the giant elastic protein titin in striated and smooth muscle cells. Muscle Nerve 36(6):740–755

    Article  CAS  PubMed  Google Scholar 

  • Grosicki GJ, Standley RA, Murach KA, Raue U, Minchev K, Coen PM, Newman AB, Cummings S, Harris T, Kritchevsky S, Goodpaster BH, Trappe S, Health ABCS (2016) Improved single muscle fiber quality in the oldest-old. J Appl Physiol (1985) 121(4):878–884

    Article  CAS  Google Scholar 

  • Herzog W (2019) Passive force enhancement in striated muscle. J Appl Physiol (1985) 126(6):1782–1789

    Article  CAS  Google Scholar 

  • Herzog W, Leonard TR, Joumaa V, Mehta A (2008) Mysteries of muscle contraction. J Appl Biomech 24(1):1–13

    Article  PubMed  Google Scholar 

  • Herzog W, Schappacher G, DuVall M, Leonard TR, Herzog JA (2016) Residual force enhancement following eccentric contractions: a new mechanism involving titin. Physiology (bethesda) 31(4):300–312

    CAS  Google Scholar 

  • Holloway GP, Holwerda AM, Miotto PM, Dirks ML, Verdijk LB, van Loon LJC (2018) Age-associated impairments in mitochondrial ADP sensitivity contribute to redox stress in senescent human skeletal muscle. Cell Rep 22(11):2837–2848

    Article  CAS  PubMed  Google Scholar 

  • Horowits R (1992) Passive force generation and titin isoforms in mammalian skeletal muscle. Biophys J 61(2):392–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horwath O, Envall H, Roja J, Emanuelsson EB, Sanz G, Ekblom B, Apro W, Moberg M (2021) Variability in vastus lateralis fiber type distribution, fiber size, and myonuclear content along and between the legs. J Appl Physiol (1985) 131(1):158–173

    Article  CAS  Google Scholar 

  • Hughes DC, Wallace MA, Baar K (2015) Effects of aging, exercise, and disease on force transfer in skeletal muscle. Am J Physiol Endocrinol Metab 309(1):E1–E10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hvid LG, Ortenblad N, Aagaard P, Kjaer M, Suetta C (2011) Effects of ageing on single muscle fibre contractile function following short-term immobilisation. J Physiol 589(Pt 19):4745–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hvid LG, Suetta C, Aagaard P, Kjaer M, Frandsen U, Ortenblad N (2013) Four days of muscle disuse impairs single fiber contractile function in young and old healthy men. Exp Gerontol 48(2):154–161

    Article  PubMed  Google Scholar 

  • Janssen I, Heymsfield SB, Wang ZM, Ross R (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol (1985) 89(1):81–88

    Article  CAS  Google Scholar 

  • Jee H, Lim JY (2016) Discrepancies between skinned single muscle fibres and whole thigh muscle function characteristics in young and elderly human subjects. Biomed Res Int 2016:6206959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Julian FJ, Moss RL (1980) Sarcomere length-tension relations of frog skinned muscle fibres at lengths above the optimum. J Physiol 304:529–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Julian FJ, Moss RL (1981) Effects of calcium and ionic strength on shortening velocity and tension development in frog skinned muscle fibres. J Physiol 311:179–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalakoutis M, Di Giulio I, Douiri A, Ochala J, Harridge SDR, Woledge RC (2021) Methodological considerations in measuring specific force in human single skinned muscle fibres. Acta Physiol (oxf) 233:e13719

    Article  CAS  Google Scholar 

  • Kim JH, Thompson LV (2013) Inactivity, age, and exercise: single-muscle fiber power generation. J Appl Physiol (1985) 114(1):90–98

    Article  CAS  Google Scholar 

  • Kim KE, Jang SN, Lim S, Park YJ, Paik NJ, Kim KW, Jang HC, Lim JY (2012) Relationship between muscle mass and physical performance: is it the same in older adults with weak muscle strength? Age Ageing 41(6):799–803

    Article  PubMed  Google Scholar 

  • Kim YH, Kim KI, Paik NJ, Kim KW, Jang HC, Lim JY (2016) Muscle strength: a better index of low physical performance than muscle mass in older adults. Geriatr Gerontol Int 16(5):577–585

    Article  PubMed  Google Scholar 

  • Larkin-Kaiser KA, Howard JJ, Leonard T, Joumaa V, Gauthier L, Logan K, Orlik B, El-Hawary R, Herzog W (2019) Relationship of muscle morphology to hip displacement in cerebral palsy: a pilot study investigating changes intrinsic to the sarcomere. J Orthop Surg Res 14(1):187

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsson L, Moss RL (1993) Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles. J Physiol 472:595–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson L, Li X, Frontera WR (1997) Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am J Physiol 272:C638–C649

    Article  CAS  PubMed  Google Scholar 

  • Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M (2019) Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev 99(1):427–511

    Article  PubMed  Google Scholar 

  • Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, Corsi AM, Rantanen T, Guralnik JM, Ferrucci L (2003) Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol 95(5):1851–1860

    Article  PubMed  Google Scholar 

  • Lee EJ, Jang HC, Koo KH, Kim HY, Lim JY (2020) Mechanical properties of single muscle fibers: understanding poor muscle quality in older adults with diabetes. Ann Geriatr Med Res 24(4):267–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Leite Fde S, Kashina A, Rassier DE (2016) Posttranslational arginylation regulates striated muscle function. Exerc Sport Sci Rev 44(3):98–103

    Article  PubMed  Google Scholar 

  • Leonard TR, DuVall M, Herzog W (2010) Force enhancement following stretch in a single sarcomere. Am J Physiol Cell Physiol 299(6):C1398-1401

    Article  CAS  PubMed  Google Scholar 

  • Lexell J, Henriksson-Larsen K, Wimblod B, Sjostrom M (1983) Distribution of different fiber types in human skeletal muscles: effects of aging studied in whole muscle cross sections. Muscle Nerve 6:588–595

    Article  CAS  PubMed  Google Scholar 

  • Li M, Ogilvie H, Ochala J, Artemenko K, Iwamoto H, Yagi N, Bergquist J, Larsson L (2015) Aberrant post-translational modifications compromise human myosin motor function in old age. Aging Cell 14(2):228–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Xia J, Zhang XI, Gathirua-Mwangi WG, Guo J, Li Y, McKenzie S, Song Y (2018) Associations of muscle mass and strength with all-cause mortality among US older adults. Med Sci Sports Exerc 50(3):458–467

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim JY, Choi SJ, Widrick JJ, Phillips EM, Frontera WR (2019) Passive force and viscoelastic properties of single fibers in human aging muscles. Eur J Appl Physiol 119(10):2339–2348

    Article  CAS  PubMed  Google Scholar 

  • Lindstedt SL (2016) Skeletal muscle tissue in movement and health: positives and negatives. J Exp Biol 219(Pt 2):183–188

    Article  PubMed  Google Scholar 

  • Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Ruegg JC, Labeit S (1996) Towards a molecular understanding of the elasticity of titin. J Mol Biol 261(1):62–71

    Article  CAS  PubMed  Google Scholar 

  • Lowe DA, Surek JT, Thomas DD, Thompson LV (2001) Electron paramagnetic resonance reveals age-related myosin structural changes in rat skeletal muscle fibers. Am J Physiol Cell Physiol 280(3):C540-547

    Article  CAS  PubMed  Google Scholar 

  • Lynch NA, Metter EJ, Lindle RS, Fozard JL, Tobin JD, Roy TA, Fleg JL, Hurley BF (1999) Muscle quality. I. Age-associated differences between arm and leg muscle groups. J Appl Physiol (1985) 86(1):188–194

    Article  CAS  Google Scholar 

  • Maden-Wilkinson TM, Degens H, Jones DA, McPhee JS (2013) Comparison of MRI and DXA to measure muscle size and age-related atrophy in thigh muscles. J Musculoskelet Neuronal Interact 13(3):320–328

    CAS  PubMed  Google Scholar 

  • Mahdy MAA (2019) Skeletal muscle fibrosis: an overview. Cell Tissue Res 375(3):575–588

    Article  PubMed  Google Scholar 

  • Mahon M, Toman A, Willan PL, Bagnall KM (1984) Variability of histochemical and morphometric data from needle biopsy specimens of human quadriceps femoris muscle. J Neurol Sci 63(1):85–100

    Article  CAS  PubMed  Google Scholar 

  • Marcucci L, Reggiani C (2020) Increase of resting muscle stiffness, a less considered component of age-related skeletal muscle impairment. Eur J Transl Myol 30(2):8982

    Article  PubMed  PubMed Central  Google Scholar 

  • Marin-Corral J, Minguella J, Ramirez-Sarmiento AL, Hussain SN, Gea J, Barreiro E (2009) Oxidised proteins and superoxide anion production in the diaphragm of severe COPD patients. Eur Respir J 33(6):1309–1319

    Article  CAS  PubMed  Google Scholar 

  • Mayer U (2003) Integrins: redundant or important players in skeletal muscle? J Biol Chem 278(17):14587–14590

    Article  CAS  PubMed  Google Scholar 

  • McKinnon NB, Connelly DM, Rice CL, Hunter SW, Doherty TJ (2017) Neuromuscular contributions to the age-related reduction in muscle power: mechanisms and potential role of high velocity power training. Ageing Res Rev 35:147–154

    Article  PubMed  Google Scholar 

  • Miljkovic N, Lim JY, Miljkovic I, Frontera WR (2015) Aging of skeletal muscle fibers. Ann Rehabil Med 39(2):155–162

    Article  PubMed  PubMed Central  Google Scholar 

  • Miljkovic I, Vella CA, Allison M (2021) Computed tomography-derived myosteatosis and metabolic disorders. Diabetes Metab J 45(4):482–491

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller MS, Toth MJ (2013) Myofilament protein alterations promote physical disability in aging and disease. Exerc Sport Sci Rev 41(2):93–99

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller MS, Bedrin NG, Callahan DM, Previs MJ, Jennings ME 2nd, Ades PA, Maughan DW, Palmer BM, Toth MJ (2013) Age-related slowing of myosin actin cross-bridge kinetics is sex specific and predicts decrements in whole skeletal muscle performance in humans. J Appl Physiol (1985) 115(7):1004–1014

    Article  CAS  Google Scholar 

  • Moen RJ, Klein JC, Thomas DD (2014) Electron paramagnetic resonance resolves effects of oxidative stress on muscle proteins. Exerc Sport Sci Rev 42(1):30–36

    Article  PubMed  PubMed Central  Google Scholar 

  • Monroy JA, Powers KL, Gilmore LA, Uyeno TA, Lindstedt SL, Nishikawa KC (2012) What is the role of titin in active muscle? Exerc Sport Sci Rev 40(2):73–78

    Article  PubMed  Google Scholar 

  • Morgan DL (1990) New insights into the behavior of muscle during active lengthening. Biophys J 57(2):209–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moritani T, deVries HA (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58(3):115–130

    CAS  PubMed  Google Scholar 

  • Moss RL (1979) Sarcomere length-tension relations of frog skinned muscle fibres during calcium activation at short lengths. J Physiol 292:177–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman AB, Haggerty CL, Goodpaster B, Harris T, Kritchevsky S, Nevitt M, Miles TP, Visser M (2003) Strength and muscle quality in a well-functioning cohort of older adults: the Health, Aging and Body Composition Study. J Am Geriatr Soc 51(3):323–330

    Article  PubMed  Google Scholar 

  • Nishikawa K (2016) Eccentric contraction: unraveling mechanisms of force enhancement and energy conservation. J Exp Biol 219(Pt 2):189–196

    Article  PubMed  Google Scholar 

  • Nishikawa K (2020) Titin: a tunable spring in active muscle. Physiology (bethesda) 35(3):209–217

    CAS  Google Scholar 

  • Noonan AM, Mazara N, Zwambag DP, Weersink E, Power GA, Brown SHM (2020) Age-related changes in human single muscle fibre passive elastic properties are sarcomere length dependent. Exp Gerontol 137:110968

    Article  PubMed  Google Scholar 

  • Ochala J, Frontera WR, Dorer DJ, Van Hoecke J, Krivickas LS (2007) Single skeletal muscle fiber elastic and contractile characteristics in young and older men. J Gerontol A Biol Sci Med Sci 62(4):375–381

    Article  PubMed  Google Scholar 

  • Oh SL, Yoon SH, Lim JY (2018) Age- and sex-related differences in myosin heavy chain isoforms and muscle strength, function, and quality: a cross sectional study. J Exerc Nutrition Biochem 22(2):43–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Olsson MC, Kruger M, Meyer LH, Ahnlund L, Gransberg L, Linke WA, Larsson L (2006) Fibre type-specific increase in passive muscle tension in spinal cord-injured subjects with spasticity. J Physiol 577(Pt 1):339–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottenheijm CA, Granzier H (2010) Lifting the nebula: novel insights into skeletal muscle contractility. Physiology (bethesda) 25(5):304–310

    CAS  Google Scholar 

  • Park SW, Goodpaster BH, Strotmeyer ES, de Rekeneire N, Harris TB, Schwartz AV, Tylavsky FA, Newman AB (2006) Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes 55(6):1813–1818

    Article  CAS  PubMed  Google Scholar 

  • Pavan P, Monti E, Bondi M, Fan C, Stecco C, Narici M, Reggiani C, Marcucci L (2020) Alterations of extracellular matrix mechanical properties contribute to age-related functional impairment of human skeletal muscles. Int J Mol Sci 21(11):3992

    Article  PubMed Central  Google Scholar 

  • Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8(8):457–465

    Article  CAS  PubMed  Google Scholar 

  • Piasecki M, Ireland A, Stashuk D, Hamilton-Wright A, Jones DA, McPhee JS (2016) Age-related neuromuscular changes affecting human vastus lateralis. J Physiol 594(16):4525–4536

    Article  CAS  PubMed  Google Scholar 

  • Poggiogalle E, Lubrano C, Gnessi L, Mariani S, Di Martino M, Catalano C, Lenzi A, Donini LM (2019) The decline in muscle strength and muscle quality in relation to metabolic derangements in adult women with obesity. Clin Nutr. https://doi.org/10.1016/j.clnu.2019.01.028

    Article  PubMed  Google Scholar 

  • Power GA, Rice CL, Vandervoort AA (2012) Increased residual force enhancement in older adults is associated with a maintenance of eccentric strength. PLoS ONE 7(10):e48044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Power GA, Herzog W, Rice CL (2014) Decay of force transients following active stretch is slower in older than young men: support for a structural mechanism contributing to residual force enhancement in old age. J Biomech 47(13):3423–3427

    Article  PubMed  Google Scholar 

  • Ramaswamy KS, Palmer ML, van der Meulen JH, Renoux A, Kostrominova TY, Michele DE, Faulkner JA (2011) Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J Physiol 589(Pt 5):1195–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid KF, Fielding RA (2012) Skeletal muscle power: a critical determinant of physical functioning in older adults. Exerc Sport Sci Rev 40(1):4–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Reid KF, Doros G, Clark DJ, Patten C, Carabello RJ, Cloutier GJ, Phillips EM, Krivickas LS, Frontera WR, Fielding RA (2012) Muscle power failure in mobility-limited older adults: preserved single fiber function despite lower whole muscle size, quality and rate of neuromuscular activation. Eur J Appl Physiol 112(6):2289–2301

    Article  PubMed  Google Scholar 

  • Reid KF, Pasha E, Doros G, Clark DJ, Patten C, Phillips EM, Frontera WR, Fielding RA (2014) Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. Eur J Appl Physiol 114(1):29–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinders I, Murphy RA, Brouwer IA, Visser M, Launer L, Siggeirsdottir K, Eiriksdottir G, Gudnason V, Jonsson PV, Lang TF, Harris TB (2016) Muscle quality and myosteatosis: novel associations with mortality risk: the age, gene/environment susceptibility (AGES)-Reykjavik study. Am J Epidemiol 183(1):53–60

    Article  PubMed  Google Scholar 

  • Roberts TJ (2016) Contribution of elastic tissues to the mechanics and energetics of muscle function during movement. J Exp Biol 219(Pt 2):266–275

    Article  PubMed  PubMed Central  Google Scholar 

  • Roche SM, Gumucio JP, Brooks SV, Mendias CL, Claflin DR (2015) Measurement of maximum isometric force generated by permeabilized skeletal muscle fibers. J vis Exp 100:e52695

    Google Scholar 

  • Rosenberg IH (1989) Summary comments. Am J Clin Nutr 50(5):1231–1233

    Article  Google Scholar 

  • Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127(5 Suppl):990S-991S

    Article  CAS  PubMed  Google Scholar 

  • Rowland LA, Bal NC, Periasamy M (2015) The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy. Biol Rev Camb Philos Soc 90(4):1279–1297

    Article  PubMed  Google Scholar 

  • Rozand V, Sundberg CW, Hunter SK, Smith AE (2020) Age-related deficits in voluntary activation: a systematic review and meta-analysis. Med Sci Sports Exerc 52(3):549–560

    Article  PubMed  PubMed Central  Google Scholar 

  • Russ DW, Gregg-Cornell K, Conaway MJ, Clark BC (2012) Evolving concepts on the age-related changes in “muscle quality.” J Cachexia Sarcopenia Muscle 3(2):95–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Sachs S, Zarini S, Kahn DE, Harrison KA, Perreault L, Phang T, Newsom SA, Strauss A, Kerege A, Schoen JA, Bessesen DH, Schwarzmayr T, Graf E, Lutter D, Krumsiek J, Hofmann S, Bergman BC (2019) Intermuscular adipose tissue (IMAT) directly modulates skeletal muscle insulin sensitivity in humans. Am J Physiol Endocrinol Metab. https://doi.org/10.1152/ajpendo.00243.2018

    Article  PubMed  PubMed Central  Google Scholar 

  • Sierra E, Fernandez A, de los Monteros AE, Arbelo M, de Quiros YB, Herraez P (2013) Muscular senescence in cetaceans: adaptation towards a slow muscle fibre phenotype. Sci Rep 3:1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundberg CW, Hunter SK, Trappe SW, Smith CS, Fitts RH (2018) Effects of elevated H(+) and Pi on the contractile mechanics of skeletal muscle fibres from young and old men: implications for muscle fatigue in humans. J Physiol 596(17):3993–4015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szentesi P, Csernoch L, Dux L, Keller-Pinter A (2019) Changes in redox signaling in the skeletal muscle with aging. Oxid Med Cell Longev 2019:4617801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tosato M, Marzetti E, Cesari M, Savera G, Miller RR, Bernabei R, Landi F, Calvani R (2017) Measurement of muscle mass in sarcopenia: from imaging to biochemical markers. Aging Clin Exp Res 29(1):19–27

    Article  PubMed  Google Scholar 

  • Toursel T, Stevens L, Granzier H, Mounier Y (2002) Passive tension of rat skeletal soleus muscle fibers: effects of unloading conditions. J Appl Physiol 92(4):1465–1472

    Article  PubMed  Google Scholar 

  • Trappe S, Gallagher P, Harber M, Carrithers J, Fluckey J, Trappe T (2003) Single muscle fibre contractile properties in young and old men and women. J Physiol 552(Pt 1):47–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walston J, Fried LP (1999) Frailty and the older man. Med Clin North Am 83(5):1173–1194

    Article  CAS  PubMed  Google Scholar 

  • Wanigatunga AA, Tudor-Locke C, Axtell RS, Glynn NW, King AC, McDermott MM, Fielding RA, Lu X, Pahor M, Manini TM (2017) Effects of a long-term physical activity program on activity patterns in older adults. Med Sci Sports Exerc 49(11):2167–2175

    Article  PubMed  PubMed Central  Google Scholar 

  • Waters DL (2019) Intermuscular adipose tissue: a brief review of etiology, association with physical function and weight loss in older adults. Ann Geriatr Med Res 23(1):3–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Widrick JJ, Trappe SW, Costill DL, Fitts RH (1996) Force-velocity and force-power properties of single muscle fibers from elite master runners and sedentary men. Am J Physiol 271(2 Pt 1):C676-683

    Article  CAS  PubMed  Google Scholar 

  • Wood DS, Zollman J, Reuben JP, Brandt PW (1975) Human skeletal muscle: properties of the “chemically skinned%” fiber. Science 187(4181):1075–1076

    Article  CAS  PubMed  Google Scholar 

  • Wood LK, Kayupov E, Gumucio JP, Mendias CL, Claflin DR, Brooks SV (2014) Intrinsic stiffness of extracellular matrix increases with age in skeletal muscles of mice. J Appl Physiol (1985) 117(4):363–369

    Article  PubMed Central  Google Scholar 

  • Wu R, De Vito G, Delahunt E, Ditroilo M (2020) Age-related changes in motor function (I). Mechanical and neuromuscular factors. Int J Sports Med 41(11):709–719

    PubMed  Google Scholar 

  • Zhang Y, Chen JS, He Q, He X, Basava RR, Hodgson J, Sinha U, Sinha S (2020) Microstructural analysis of skeletal muscle force generation during aging. Int J Numer Method Biomed Eng 36(1):e3295

    Article  PubMed  Google Scholar 

  • Zhao Q, Zmuda JM, Kuipers AL, Jonnalagadda P, Bunker CH, Patrick AL, Youk AO, Miljkovic I (2016) Greater skeletal muscle fat infiltration is associated with higher all-cause mortality among men of African ancestry. Age Ageing 45(4):529–534

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MSIT) (No. 800-20200179). WRF’s research is partially funded by Grant S21 MD001830-04, National Institute on Minority Health and Health Disparities, National Institutes of Health, United States. The content of this report is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Funding

This work was funded by National Research Foundation of Korea (Grant no. 800-20200179); Foundation for the National Institutes of Health (Grant no. S21 MD001830-04).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, WF; methodology, JYL; data curation, JYL and WF; writing original draft, JYL; writing, review and editing, JYL, WF.

Corresponding author

Correspondence to Walter R. Frontera.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Michael Lindinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, JY., Frontera, W.R. Single skeletal muscle fiber mechanical properties: a muscle quality biomarker of human aging. Eur J Appl Physiol 122, 1383–1395 (2022). https://doi.org/10.1007/s00421-022-04924-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-022-04924-4

Keywords

Navigation