Skip to main content
Log in

Oxygen flux from capillary to mitochondria: integration of contemporary discoveries

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Resting humans transport ~ 100 quintillion (1018) oxygen (O2) molecules every second to tissues for consumption. The final, short distance (< 50 µm) from capillary to the most distant mitochondria, in skeletal muscle where exercising O2 demands may increase 100-fold, challenges our understanding of O2 transport. To power cellular energetics O2 reaches its muscle mitochondrial target by dissociating from hemoglobin, crossing the red cell membrane, plasma, endothelial surface layer, endothelial cell, interstitial space, myocyte sarcolemma and a variable expanse of cytoplasm before traversing the mitochondrial outer/inner membranes and reacting with reduced cytochrome c and protons. This past century our understanding of O2’s passage across the body’s final O2 frontier has been completely revised. This review considers the latest structural and functional data, challenging the following entrenched notions: (1) That O2 moves freely across blood cell membranes. (2) The Krogh–Erlang model whereby O2 pressure decreases systematically from capillary to mitochondria. (3) Whether intramyocyte diffusion distances matter. (4) That mitochondria are separate organelles rather than coordinated and highly plastic syncytia. (5) The roles of free versus myoglobin-facilitated O2 diffusion. (6) That myocytes develop anoxic loci. These questions, and the intriguing notions that (1) cellular membranes, including interconnected mitochondrial membranes, act as low resistance conduits for O2, lipids and H+-electrochemical transport and (2) that myoglobin oxy/deoxygenation state controls mitochondrial oxidative function via nitric oxide, challenge established tenets of muscle metabolic control. These elements redefine muscle O2 transport models essential for the development of effective therapeutic countermeasures to pathological decrements in O2 supply and physical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguirre E, Rodríguez-Juárez F, Bellelli A, Gnaiger E, Cadenas S (2010) Kinetic model of the inhibition of respiration by endogenous nitric oxide in intact cells. Biochim Biophys Acta 1797:557–565

    CAS  PubMed  Google Scholar 

  • Al-Samir S, Goossens D, Cartron JP, Nielsen S, Scherbarth F, Steinlechner S, Gros G, Endeward V (2016) Maximal oxygen consumption is reduced in aquaporin-1 knockout mice. Front Physiol 7:347

    PubMed  PubMed Central  Google Scholar 

  • Al-Shammari AA, Kissane RWP, Holbek S, Mackey AL, Andersen TR, Gaffney EA, Kjaer M, Egginton S (2019) Integrated method for quantitative morphometry and oxygen transport modeling in striated muscle. J Appl Physiol (1985) 126:544–557

    CAS  Google Scholar 

  • Angleys H, Østergaard L (2020) Krogh’s capillary recruitment hypothesis, 100 years on: is the opening of previously closed capillaries necessary to ensure muscle oxygenation during exercise? Am J Physiol Heart Circ Physiol 318:H425–H447

    CAS  PubMed  Google Scholar 

  • Arihara K, Cassens RG, Greaser ML, Luchansky JB, Mozdziak PE (1995) Localization of metmyoglobin-reducing enzyme (NADH-cytochrome b(5) reductase) system components in bovine skeletal muscle. Meat Sci 39:205–213

    CAS  PubMed  Google Scholar 

  • Armstrong RB, Essén-Gustavsson B, Hoppeler H, Jones JH, Kayar SR, Laughlin MH, Lindholm A, Longworth KE, Taylor CR, Weibel ER (1992) O2 delivery at O2max and oxidative capacity in muscles of standardbred horses. J Appl Physiol (1985) 73:2274–2282

    CAS  Google Scholar 

  • Arthur PG, Hogan MC, Bebout DE, Wagner PD, Hochachka PW (1985) Modeling the effects of hypoxia on ATP turnover in exercising muscle. J Appl Physiol (1985) 73:737–742

    Google Scholar 

  • Bailey SJ, Gandra PG, Jones AM, Hogan MC, Nogueira L (2019) Incubation with sodium nitrite attenuates fatigue development in intact single mouse fibres at physiological PO2. J Physiol 597:5429–5443

    CAS  PubMed  Google Scholar 

  • Bakeeva LE, Chentsov YuS, Skulachev VP (1978) Mitochondrial framework (reticulum mitochondriale) in rat diaphragm muscle. Biochim Biophys Acta 501:349–369

    CAS  PubMed  Google Scholar 

  • Behnke BJ, Kindig CA, Musch TI, Koga S, Poole DC (2001) Dynamics of microvascular oxygen pressure across the rest-exercise transition in rat skeletal muscle. Respir Physiol 126:53–63

    CAS  PubMed  Google Scholar 

  • Behnke BJ, Barstow TJ, Kindig CA, McDonough P, Musch TI, Poole DC (2002a) Dynamics of oxygen uptake following exercise onset in rat skeletal muscle. Respir Physiol Neurobiol 133:229–239

    PubMed  Google Scholar 

  • Behnke BJ, Kindig CA, Musch TI, Sexton WL, Poole DC (2002b) Effects of prior contractions on muscle microvascular oxygen pressure at onset of subsequent contractions. J Physiol 539(Pt 3):927–934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Behnke BJ, McDonough P, Padilla DJ, Musch TI, Poole DC (2003) Oxygen exchange profile in rat muscles of contrasting fibre types. J Physiol 549(Pt 2):597–605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bekedam MA, van Beek-Harmsen BJ, van Mechelen W, Boonstra A, van der Laarse WJ (2009) Myoglobin concentration in skeletal muscle fibers of chronic heart failure patients. J Appl Physiol (1985) 107:1138–1143

    CAS  Google Scholar 

  • Bentley TB, Pittman RN (1997) Influence of temperature on oxygen diffusion in hamster retractor muscle. Am J Physiol 272(3 Pt 2):H1106-1112

    CAS  PubMed  Google Scholar 

  • Borg TK, Caulfield JB (1980) Morphology of connective tissue in skeletal muscle. Tissue Cell 12:197–207

    CAS  PubMed  Google Scholar 

  • Brown JM (1990) Tumor hypoxia, drug resistance, and metastases. J Natl Cancer Inst 82:338–339

    CAS  PubMed  Google Scholar 

  • Brown GC, Cooper CE (1994) Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 356:295–298

    CAS  PubMed  Google Scholar 

  • Bubenzer HJ (1966) Die dünnen und die dicken Muskelfasern des Zwerchfells der Ratte. Z Zellforsch 69:520–550

    CAS  PubMed  Google Scholar 

  • Cárdenas-Navia LI, Mace D, Richardson RA, Wilson DF, Shan S, Dewhirst MW (2008) The pervasive presence of fluctuating oxygenation in tumors. Cancer Res 68:5812–5819

    PubMed  Google Scholar 

  • Chance B, Quistorff B (1977) Study of tissue oxygen gradients by single and multiple indicators. Adv Exp Med Biol 94:331–338

    CAS  PubMed  Google Scholar 

  • Chilibeck PD, Paterson DH, Cunningham DA, Taylor AW, Noble EG (1997) Muscle capillarization, O2 diffusion distance, and O2 kinetics in old and young individuals. J Appl Physiol (1985) 82:63–69

    CAS  Google Scholar 

  • Chung Y, Molé PA, Sailasuta N, Tran TK, Hurd R, Jue T (2005) Control of respiration and bioenergetics during muscle contraction. Am J Physiol Cell Physiol 288:C730-738

    CAS  PubMed  Google Scholar 

  • Clanton TL (2019) Managing the power grid: how myoglobin can regulate PO2 and energy distribution in skeletal muscle. J Appl Physiol (1985) 126:787–790

    Google Scholar 

  • Clanton TL, Hogan MC, Gladden LB (2013) Regulation of cellular gas exchange, oxygen sensing, and metabolic control. Compr Physiol 3:1135–1190

    CAS  PubMed  Google Scholar 

  • Clark A, Clark PAA (1986) The end-points of the oxygen path: transport resistance in red cells and mitochondria. Adv Exp Med Biol 200:43–47

    PubMed  Google Scholar 

  • Cohen KD, Sarelius IH (2002) Muscle contraction under capillaries in hamster muscle induces arteriolar dilatation via K(ATP) channels and nitric oxide. J Physiol 539(Pt 2):547–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colburn TD, Hirai DM, Craig JC, Ferguson SK, Weber RE, Schulze KM, Behnke BJ, Musch TI, Poole DC (2020) Transcapillary PO2 gradients in contracting muscles across the fibre type and oxidative continuum. J Physiol 598:3187–3202

    CAS  PubMed  Google Scholar 

  • Cole RP (1982) Myoglobin function in exercising skeletal muscle. Science 216(4545):523–525

    CAS  PubMed  Google Scholar 

  • Conley KE, Jones C (1996) Myoglobin content and oxygen diffusion: model analysis of horse and steer muscle. Am J Physiol 271(6 Pt 1):C2027-2036 ((Erratum in: Am J Physiol 1999;276(3 Pt 1):section C))

    CAS  PubMed  Google Scholar 

  • Conley KE, Ordway GA, Richardson RS (2000) Deciphering the mysteries of myoglobin in striated muscle. Acta Physiol Scand 168:623–634

    CAS  PubMed  Google Scholar 

  • Connett RJ, Gayeski TE, Honig CR (1983) Lactate production in a pure red muscle in absence of anoxia: mechanisms and significance. Adv Exp Med Biol 159:327–335

    CAS  PubMed  Google Scholar 

  • Connett RJ, Gayeski TE, Honig CR (1984) Lactate accumulation in fully aerobic, working, dog gracilis muscle. Am J Physiol 246(1 Pt 2):H120-128

    CAS  PubMed  Google Scholar 

  • Connett RJ, Gayeski TE, Honig CR (1986) Lactate efflux is unrelated to intracellular PO2 in a working red muscle in situ. J Appl Physiol (1985) 61:402–408

    CAS  Google Scholar 

  • Craig JC, Colburn TD, Caldwell JT, Hirai DM, Tabuchi A, Baumfalk DR, Behnke BJ, Ade CJ, Musch TI, Poole DC (2019) Central and peripheral factors mechanistically linked to exercise intolerance in heart failure with reduced ejection fraction. Am J Physiol Heart Circ Physiol 317:H434–H444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Damon DH, Duling BR (1984) Distribution of capillary blood flow in the microcirculation of the hamster: an in vivo study using epifluorescent microscopy. Microvasc Res 27:81–95

    CAS  PubMed  Google Scholar 

  • Diederich ER, Behnke BJ, McDonough P, Kindig CA, Barstow TJ, Poole DC, Musch TI (2002) Dynamics of microvascular oxygen partial pressure in contracting skeletal muscle of rats with chronic heart failure. Cardiovasc Res 56:479–486

    CAS  PubMed  Google Scholar 

  • Duhaylongsod FG, Griebel JA, Bacon DS, Wolfe WG, Piantadosi CA (1993) Effects of muscle contraction on cytochrome a, a3 redox state. J Appl Physiol (1985) 75:790–797

    CAS  Google Scholar 

  • Edwards DL, Criddle RS (1966) The interaction of myoglobin with mitochondrial structural protein. Biochemistry 5:588–591

    CAS  PubMed  Google Scholar 

  • Ellis CG, Potter RF, Groom AC (1983) The Krogh cylinder geometry is not appropriate for modelling O2 transport in contracted skeletal muscle. Adv Exp Med Biol 159:253–268

    CAS  PubMed  Google Scholar 

  • Ellsworth ML, Pittman RN (1984) Heterogeneity of oxygen diffusion through hamster striated muscles. Am J Physiol Heart Circ Physiol 246:H161–H167

    CAS  Google Scholar 

  • Federspiel WJ, Popel AS (1986) A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries. Microvasc Res 32:164–189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira LF, McDonough P, Behnke BJ, Musch TI, Poole DC (2006) Blood flow and O2 extraction as a function of O2 uptake in muscles composed of different fiber types. Respir Physiol Neurobiol 153:237–249

    PubMed  Google Scholar 

  • Forster RE (1964) Factors affecting the rate of exchange of O2 between blood and tissues. In: Dickens F, Neil E (eds) Oxygen in the animal organism. Pergamon, New York, pp 393–409

    Google Scholar 

  • Gaesser GA, Brooks GA (1975) Muscular efficiency during steady-rate exercise: effects of speed and work rate. J Appl Physiol 38:1132–1139

    CAS  PubMed  Google Scholar 

  • Gandra PG, Shiah AA, Nogueira L, Hogan MC (2018) A mitochondrial-targeted antioxidant improves myofilament Ca2+ sensitivity during prolonged low frequency force depression at low PO2. J Physiol 596:1079–1089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garry DJ, Ordway GA, Lorenz JN, Radford NB, Chin ER, Grange RW, Bassel-Duby R, Williams RS (1998) Mice without myoglobin. Nature 395(6705):905–908

    CAS  PubMed  Google Scholar 

  • Gauthier GF, Padykula HA (1966) Cytological studies of fiber types in skeletal muscle. A comparative study of the mammalian diaphragm. J Cell Biol 28:333–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gayeski TEJ (1981) A cryogenic microspectrophotometric method for measuring myoglobin saturation in subcellular volumes; application to resting dog gracilis muscle. (Ph.D. dissertation). University of Rochester, Rochester

  • Gibson QH (1959) The kinetics of reactions between haemoglobin and gases. Prog Biophys Biophys Chem 9:1–53

    Google Scholar 

  • Glancy B, Hsu LY, Dao L, Bakalar M, French S, Chess DJ, Taylor JL, Picard M, Aponte A, Daniels MP, Esfahani S, Cushman S, Balaban RS (2014) In vivo microscopy reveals extensive embedding of capillaries within the sarcolemma of skeletal muscle fibers. Microcirculation 21:131–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glancy B, Hartnell LM, Malide D, Yu ZX, Combs CA, Connelly PS, Subramaniam S, Balaban RS (2015) Mitochondrial reticulum for cellular energy distribution in muscle. Nature 523(7562):617–620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gödecke A, Flögel U, Zanger K, Ding Z, Hirchenhain J, Decking UK, Schrader J (1999) Disruption of myoglobin in mice induces multiple compensatory mechanisms. Proc Natl Acad Sci USA 96:10495–10500

    PubMed  PubMed Central  Google Scholar 

  • Golub AS, Pittman RN (2012) Oxygen dependence of respiration in rat spinotrapezius muscle in situ. Am J Physiol Heart Circ Physiol 303:H47-56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golub AS, Song BK, Pittman RN (2011) The rate of O2 loss from mesenteric arterioles is not unusually high. Am J Physiol Heart Circ Physiol 301:H737-745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golub AS, Dodhy SC, Pittman RN (2018) Oxygen dependence of respiration in rat spinotrapezius muscle contracting at 0.5–8 twitches per second. J Appl Physiol (1985) 125:124–133

    CAS  Google Scholar 

  • Grassi B, Poole DC, Richardson RS, Knight DR, Erickson BK, Wagner PD (1996) Muscle O2 uptake kinetics in humans: implications for metabolic control. J Appl Physiol (1985) 80:988–998

    CAS  Google Scholar 

  • Groebe K, Thews G (1990) Calculated intra- and extracellular PO2 gradients in heavily working red muscle. Am J Physiol 259(1 Pt 2):H84-92

    CAS  PubMed  Google Scholar 

  • Gros G, Wittenberg BA, Jue T (2010) Myoglobin’s old and new clothes: from molecular structure to function in living cells. J Exp Biol 213(Pt 16):2713–2725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Günther H (1921) über den Muskelfarbstoff. Virch Arch 230:146–178

    Google Scholar 

  • Hellsten Y, Nyberg M (2015) Cardiovascular adaptations to exercise training. Compr Physiol 6:1–32

    PubMed  Google Scholar 

  • Hemmingsen EA (1965) Accelerated transfer of oxygen through solutions of heme pigments. Acta Physiol Scand Suppl 246:1–53

    Google Scholar 

  • Hendgen-Cotta UB, Flögel U, Kelm M, Rassaf T (2010) Unmasking the Janus face of myoglobin in health and disease. J Exp Biol 213(Pt 16):2734–2740

    CAS  PubMed  Google Scholar 

  • Hepple RT, Mackinnon SL, Thomas SG, Goodman JM, Plyley MJ (1997) Quantitating the capillary supply and the response to resistance training in older men. Pflugers Arch 433:238–244

    CAS  PubMed  Google Scholar 

  • Hepple RT, Hogan MC, Stary C, Bebout DE, Mathieu-Costello O, Wagner PD (2000) Structural basis of muscle O2 diffusing capacity: evidence from muscle function in situ. J Appl Physiol (1985) 88:560–566

    CAS  Google Scholar 

  • Hirai DM, Musch TI, Poole DC (2015) Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization. Am J Physiol Heart Circ Physiol 309:H1419-1439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirai DM, Craig JC, Colburn TD, Eshima H, Kano Y, Sexton WL, Musch TI, Poole DC (2018) Skeletal muscle microvascular and interstitial PO2 from rest to contractions. J Physiol 596:869–883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirai DM, Colburn TD, Craig JC, Hotta K, Kano Y, Musch TI, Poole DC (2019) Skeletal muscle interstitial O2 pressures: bridging the gap between the capillary and myocyte. Microcirculation 26:e12497

    PubMed  Google Scholar 

  • Hogan MC, Welch HG (1984) Effect of varied lactate levels on bicycle ergometer performance. J Appl Physiol Respir Environ Exerc Physiol 57:507–513

    CAS  PubMed  Google Scholar 

  • Hogan MC, Cox RH, Welch HG (1983) Lactate accumulation during incremental exercise with varied inspired oxygen fractions. J Appl Physiol Respir Environ Exerc Physiol 55:1134–1140

    CAS  PubMed  Google Scholar 

  • Hogan MC, Roca J, Wagner PD, West JB (1988) Limitation of maximal O2 uptake and performance by acute hypoxia in dog muscle in situ. J Appl Physiol (1985) 65:815–821

    CAS  Google Scholar 

  • Hogan MC, Roca J, West JB, Wagner PD (1989) Dissociation of maximal O2 uptake from O2 delivery in canine gastrocnemius in situ. J Appl Physiol (1985) 66:1219–1226

    CAS  Google Scholar 

  • Hogan MC, Bebout DE, Wagner PD, West JB (1990) Maximal O2 uptake of in situ dog muscle during acute hypoxemia with constant perfusion. J Appl Physiol (1985) 69:570–576

    CAS  Google Scholar 

  • Hogan MC, Bebout DE, Wagner PD (1991) Effect of hemoglobin concentration on maximal O2 uptake in canine gastrocnemius muscle in situ. J Appl Physiol (1985) 70:1105–1112

    CAS  Google Scholar 

  • Hogan MC, Arthur PG, Bebout DE, Hochachka PW, Wagner PD (1992) Role of O2 in regulating tissue respiration in dog muscle working in situ. J Appl Physiol (1985) 73:728–736

    CAS  Google Scholar 

  • Holland RAB (1997) Kinetics of oxygen and carbon dioxide reactions. In: Crystal RG, West JB, Weibel ER, Barnes PJ (eds) The lung: scientific foundations. Raven Press, New York, pp 1643–1655

    Google Scholar 

  • Honig CR, Gayeski TE, Groebe K (1997) Myoglobin and oxygen gradients. In: Crystal RG, West JB, Weibel ER, Barnes PJ (eds) The lung: scientific foundations. Raven Press, New York, pp 1925–1933

    Google Scholar 

  • Hoofd L, Kreuzer F (1997) Oxygen transfer from blood to mitochondria. In: Crystal RG, West JB, Weibel ER, Barnes PJ (eds) The lung: scientific foundations. Raven Press, New York, pp 1913–1923

    Google Scholar 

  • Howlett RA, Hogan MC (2007) Effect of hypoxia on fatigue development in rat muscle composed of different fibre types. Exp Physiol 92:887–894

    PubMed  Google Scholar 

  • Hudlicka O, Egginton S, Brown MD (1988) Capillary diffusion distances – their importance for cardiac and skeletal muscle performance. NIPS 3:134–138

    Google Scholar 

  • Huertas JR, Ruiz-Ojeda FJ, Plaza-Díaz J, Nordsborg NB, Martín-Albo J, Rueda-Robles A, Casuso RA (2019) Human muscular mitochondrial fusion in athletes during exercise. FASEB J 33:12087–12098

    CAS  PubMed  Google Scholar 

  • Jürgens KD, Peters T, Gros G (1994) Diffusivity of myoglobin in intact skeletal muscle cells. Proc Natl Acad Sci USA 91:3829–3833

    PubMed  PubMed Central  Google Scholar 

  • Katz SD, Maskin C, Jondeau G, Cocke T, Berkowitz R, LeJemtel T (2000) Near-maximal fractional oxygen extraction by active skeletal muscle in patients with chronic heart failure. J Appl Physiol (1985) 88:2138–2142

    CAS  Google Scholar 

  • Kayar SR, Banchero N (1985) Sequential perfusion of skeletal muscle capillaries. Microvasc Res 30:298–305

    CAS  PubMed  Google Scholar 

  • Kayar SR, Weiss HR (1992) Diffusion distances, total capillary length and mitochondrial volume in pressure-overload myocardial hypertrophy. J Mol Cell Cardiol 24:1155–1166

    CAS  PubMed  Google Scholar 

  • Kayar SR, Archer PG, Lechner AJ, Banchero N (1982a) The closest-individual method in the analysis of the distribution of capillaries. Microvasc Res 24:326–341

    CAS  PubMed  Google Scholar 

  • Kayar SR, Lechner AJ, Banchero N (1982b) The distribution of diffusion distances in the gastrocnemius muscle of various mammals during maturation. Pflug Arch 394:124–129

    CAS  Google Scholar 

  • Kindig CA, Poole DC (1998) A comparison of the microcirculation in the rat spinotrapezius and diaphragm muscles. Microvasc Res 55:249–259

    CAS  PubMed  Google Scholar 

  • Kindig CA, Musch TI, Basaraba RJ, Poole DC (1999) Impaired capillary hemodynamics in skeletal muscle of rats in chronic heart failure. J Appl Physiol (1985) 87:652–660

    CAS  Google Scholar 

  • Kindig CA, Richardson TE, Poole DC (2002) Skeletal muscle capillary hemodynamics from rest to contractions: implications for oxygen transfer. J Appl Physiol (1985) 92:2513–2520

    Google Scholar 

  • Kirkwood SP, Munn EA, Brooks GA (1986) Mitochondrial reticulum in limb skeletal muscle. Am J Physiol 251(3 Pt 1):C395-402

    CAS  PubMed  Google Scholar 

  • Kissane RWP, Al-Shammari AA, Egginton S (2021) The importance of capillary distribution in supporting muscle function, building on Krogh’s seminal ideas. Comp Biochem Physiol A Mol Integr Physiol 254:110889

    CAS  PubMed  Google Scholar 

  • Klitzman B, Duling BR (1979) Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am J Physiol 237:H481-490

    CAS  PubMed  Google Scholar 

  • Koga S, Poole DC, Fukuoka Y, Ferreira LF, Kondo N, Ohmae E, Barstow TJ (2011) Methodological validation of the dynamic heterogeneity of muscle deoxygenation within the quadriceps during cycle exercise. Am J Physiol Regul Integr Comp Physiol 301:R534-541

    CAS  PubMed  Google Scholar 

  • Koga S, Barstow TJ, Okushima D, Rossiter HB, Kondo N, Ohmae E, Poole DC (2015) Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise. J Appl Physiol (1985) 118:1435–1442

    Google Scholar 

  • Krogh A (1919a) The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol 52:409–415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krogh A (1919b) The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion. J Physiol 52:391–408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krogh A (1919c) The supply of oxygen to the tissues and the regulation of the capillary circulation. J Physiol 52:457–474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krogh A (1920) The Nobel lecture: “A contribution to the physiology of capillaries. https://www.nobelprize.org/prizes/medicine/1920/krogh/lecture/. Accessed 26 May 2021

  • Krogh A (1922) The anatomy and physiology of capillaries. Yale University Press, New Haven

    Google Scholar 

  • Lamb IR, Novielli NM, Murrant CL (2018) Capillary response to skeletal muscle contraction: evidence that redundancy between vasodilators is physiologically relevant during active hyperaemia. J Physiol 596:1357–1372 (Erratum in: J Physiol 2019;597:4107)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb IR, Novielli-Kuntz NM, Murrant CL (2021) Capillaries communicate with the arteriolar microvascular network by a pannexin/purinergic-dependent pathway in hamster skeletal muscle. Am J Physiol Heart Circ Physiol 320:H1699–H1711

    CAS  PubMed  Google Scholar 

  • Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce-Esquivel AA, Simmons GH, Bender SB, Padilla J, Bache RJ, Merkus D, Duncker DJ (2021) Peripheral circulation. Compr Physiol 2:321–447

    Google Scholar 

  • Lawrie RA (1953) The activity of the cytochrome system in muscle and its relation to myoglobin. Biochem J 55:298–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Samouilov A, Liu X, Zweier JL (2004) Characterization of the effects of oxygen on xanthine oxidase-mediated nitric oxide formation. J Biol Chem 279:16939–16946

    CAS  PubMed  Google Scholar 

  • Lin PC, Kreutzer U, Jue T (2007a) Anisotropy and temperature dependence of myoglobin translational diffusion in myocardium: implication for oxygen transport and cellular architecture. Biophys J 92:2608–2620 ((Erratum in: Biophys J. 2008;95:5000))

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin PC, Kreutzer U, Jue T (2007b) Myoglobin translational diffusion in rat myocardium and its implication on intracellular oxygen transport. J Physiol 578(Pt 2):595–603 (Erratum in: J Physiol 2008;586(Pt23):5835)

    CAS  PubMed  Google Scholar 

  • Lutjemeier BJ, Ferreira LF, Poole DC, Townsend D, Barstow TJ (2008) Muscle microvascular hemoglobin concentration and oxygenation within the contraction-relaxation cycle. Respir Physiol Neurobiol 160:131–138

    CAS  PubMed  Google Scholar 

  • Malvin GM, Wood SC (1992) Effects of capillary red cell density on gas conductance of frog skin. J Appl Physiol (1985) 73:224–233

    CAS  Google Scholar 

  • Mathieu-Costello O, Hoppeler H, Weibel ER (1989) Capillary tortuosity in skeletal muscles of mammals depends on muscle contraction. J Appl Physiol (1985) 66:1436–1442

    CAS  Google Scholar 

  • McDonough P, Behnke BJ, Padilla DJ, Musch TI, Poole DC (2005) Control of microvascular oxygen pressures in rat muscles comprised of different fibre types. J Physiol 563(Pt 3):903–913

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGahren ED, Beach JM, Duling BR (1998) Capillaries demonstrate changes in membrane potential in response to pharmacological stimuli. Am J Physiol 274:H60-65

    CAS  PubMed  Google Scholar 

  • Mendelson AA, Milkovich S, Hunter T, Vijay R, Choi YH, Milkovich S, Ho E, Goldman D, Ellis CG (2021) The capillary fascicle in skeletal muscle: structural and functional physiology of RBC distribution in capillary networks. J Physiol 599:2149–2168

    CAS  PubMed  Google Scholar 

  • Merx MW, Gödecke A, Flögel U, Schrader J (2005) Oxygen supply and nitric oxide scavenging by myoglobin contribute to exercise endurance and cardiac function. FASEB J 19:1015–1017

    CAS  PubMed  Google Scholar 

  • Meyer RA, Sweeney HL, Kushmerick MJ (1984) A simple analysis of the “phosphocreatine shuttle.” Am J Physiol 246(5 Pt 1):C365-377

    CAS  PubMed  Google Scholar 

  • Michenkova M, Taki S, Blosser MC, Hwang HJ, Kowatz T, Moss FJ, Occhipinti R, Qin X, Sen S, Shinn E, Wang D, Zeise BS, Zhao P, Malmstadt N, Vahedi-Faridi A, Tajkhorshid E, Boron WF (2021) Carbon dioxide transport across membranes. Interface Focus 11:20200090

    PubMed  Google Scholar 

  • Millikan GA (1939) Muscle hemoglobin. Physiol Rev 19:503–523

    CAS  Google Scholar 

  • Molé PA, Chung Y, Tran TK, Sailasuta N, Hurd R, Jue T (1999) Myoglobin desaturation with exercise intensity in human gastrocnemius muscle. Am J Physiol 277:R173-180

    PubMed  Google Scholar 

  • Mörner KAH (1897) Beobachtungen über den Muskelfarbstoff. Nord Med Ark 30:1–8

    Google Scholar 

  • Mughal A, Harraz OF, Gonzales AL, Hill-Eubanks D, Nelson MT (2021) PIP2 improves cerebral blood flow in a mouse model of Alzheimer’s disease. Function (oxf) 2:zqab010

    Google Scholar 

  • Murrant CL, Sarelius IH (2015) Local control of blood flow during active hyperaemia: what kinds of integration are important? J Physiol 593:4699–4711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nyakayiru J, Kouw IWK, Cermak NM, Senden JM, van Loon LJC, Verdijk LB (2017) Sodium nitrate ingestion increases skeletal muscle nitrate content in humans. J Appl Physiol (1985) 123:637–644 (Erratum in: J Appl Physiol (1985). 2017;123:1738)

    CAS  Google Scholar 

  • Ogata T, Yamasaki Y (1997) Ultra-high-resolution scanning electron microscopy of mitochondria and sarcoplasmic reticulum arrangement in human red, white, and intermediate muscle fibers. Anat Rec 248:214–223

    CAS  PubMed  Google Scholar 

  • Okushima D, Poole DC, Rossiter HB, Barstow TJ, Kondo N, Ohmae E, Koga S (2015) Muscle deoxygenation in the quadriceps during ramp incremental cycling: deep vs. superficial heterogeneity. J Appl Physiol 119:1313–1319

    CAS  PubMed  Google Scholar 

  • Østergaard L (2020) Blood flow, capillary transit times, and tissue oxygenation: the centennial of capillary recruitment. J Appl Physiol (1985) 129:1413–1421

    Google Scholar 

  • Padilla DJ, McDonough P, Behnke BJ, Kano Y, Hageman KS, Musch TI, Poole DC (2006) Effects of Type II diabetes on capillary hemodynamics in skeletal muscle. Am J Physiol Heart Circ Physiol 291:H2439-2444

    CAS  PubMed  Google Scholar 

  • Padilla DJ, McDonough P, Behnke BJ, Kano Y, Hageman KS, Musch TI, Poole DC (2007) Effects of Type II diabetes on muscle microvascular oxygen pressures. Respir Physiol Neurobiol 156:187–195

    CAS  PubMed  Google Scholar 

  • Palacios-Callender M, Quintero M, Hollis VS, Springett RJ, Moncada S (2004) Endogenous NO regulates superoxide production at low oxygen concentrations by modifying the redox state of cytochrome c oxidase. Proc Natl Acad Sci USA 101:7630–7635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papadopoulos S, Jürgens KD, Gros G (1995) Diffusion of myoglobin in skeletal muscle cells–dependence on fibre type, contraction and temperature. Pflug Arch 430:519–525

    CAS  Google Scholar 

  • Papadopoulos S, Endeward V, Revesz-Walker B, Jurgens KD, Gros G (2001) Radial and longitudinal diffusion of myoglobin in single living heart and skeletal muscle cells. Proc Natl Acad Sci USA 98:5904–5909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parthasarathi K, Lipowsky HH (1999) Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability. Am J Physiol 277:H2145-2157

    CAS  PubMed  Google Scholar 

  • Pernas L, Scorrano L (2016) Mito-Morphosis: Mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol 78:505–531

    CAS  PubMed  Google Scholar 

  • Pias SC (2021) How does oxygen diffuse from capillaries to tissue mitochondria? Barriers and pathways. J Physiol 599:1769–1782

    CAS  PubMed  Google Scholar 

  • Piknova B, Park JW, Swanson KM, Dey S, Noguchi CT, Schechter AN (2015) Skeletal muscle as an endogenous nitrate reservoir. Nitric Oxide 47:10–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pittman RN (1995) Influence of microvascular architecture on oxygen exchange in skeletal muscle. Microcirculation 2:1–18

    CAS  PubMed  Google Scholar 

  • Pittman RN (2013) Oxygen transport in the microcirculation and its regulation. Microcirculation 20:117–137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poole DC (2019) Edward F. Adolph distinguished lecture. Contemporary model of muscle microcirculation: gateway to function and dysfunction. J Appl Physiol (1985) 127:1012–1033

    CAS  Google Scholar 

  • Poole DC, Erickson HH (2011) Highly athletic terrestrial mammals: horses and dogs. Compr Physiol 1:1–37

    PubMed  Google Scholar 

  • Poole DC, Jones AM (2012) Oxygen uptake kinetics. Compr Physiol 2:933–996

    PubMed  Google Scholar 

  • Poole DC, Hirai DM, Copp SW, Musch TI (2012) Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance. Am J Physiol Heart Circ Physiol 302:H1050-1063

    CAS  PubMed  Google Scholar 

  • Poole DC, Richardson RS, Haykowsky MJ, Hirai DM, Musch TI (2018) Exercise limitations in heart failure with reduced and preserved ejection fraction. J Appl Physiol (1985) 124:208–224

    CAS  Google Scholar 

  • Poole DC, Pittman RN, Musch TI, Østergaard L (2020) August Krogh’s theory of muscle microvascular control and oxygen delivery: a paradigm shift based on new data. J Physiol 598:4473–4507

    CAS  PubMed  Google Scholar 

  • Poole DC, Kano Y, Koga S, Musch TI (2021) August Krogh: muscle capillary function and oxygen delivery. Comp Biochem Physiol A Mol Integr Physiol 253:110852

    CAS  PubMed  Google Scholar 

  • Popel AS (1989) Theory of oxygen transport to tissue. Crit Rev Biomed Eng 17:257–321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popper K (1934) The logic of scientific discovery. Taylor and Francis, New York ((reprinted 2005))

    Google Scholar 

  • Richardson RS, Poole DC, Knight DR, Kurdak SS, Hogan MC, Grassi B, Johnson EC, Kendrick KF, Erickson BK, Wagner PD (1993) High muscle blood flow in man: is maximal O2 extraction compromised? J Appl Physiol (1985) 75:1911–1916

    CAS  Google Scholar 

  • Richardson RS, Poole DC, Knight DR, Wagner PD (1994) Red blood cell transit time in man: theoretical effects of capillary density. Adv Exp Med Biol 361:521–532

    CAS  PubMed  Google Scholar 

  • Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD (1995) Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J Clin Investig 96:1916–1926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson RS, Noyszewski EA, Leigh JS, Wagner PD (1998) Lactate efflux from exercising human skeletal muscle: role of intracellular PO2. J Appl Physiol (1985) 85:627–634

    CAS  Google Scholar 

  • Richardson RS, Leigh JS, Wagner PD, Noyszewski EA (1999) Cellular PO2 as a determinant of maximal mitochondrial O2 consumption in trained human skeletal muscle. J Appl Physiol (1985) 87:325–331

    CAS  Google Scholar 

  • Richardson RS, Newcomer SC, Noyszewski EA (2001) Skeletal muscle intracellular PO2 assessed by myoglobin desaturation: response to graded exercise. J Appl Physiol (1985) 91:2679–2685

    CAS  Google Scholar 

  • Richardson TE, Kindig CA, Musch TI, Poole DC (2003) Effects of chronic heart failure on skeletal muscle capillary hemodynamics at rest and during contractions. J Appl Physiol (1985) 95:1055–1062

    Google Scholar 

  • Riveros-Moreno V, Wittenberg JB (1972) The self-diffusion coefficients of myoglobin and hemoglobin in concentrated solutions. J Biol Chem 247:895–901

    CAS  PubMed  Google Scholar 

  • Roca J, Hogan MC, Story D, Bebout DE, Haab P, Gonzalez R, Ueno O, Wagner PD (1989) Evidence for tissue diffusion limitation of O2max in normal humans. J Appl Physiol (1985) 67:291–299

    CAS  Google Scholar 

  • Roca J, Agusti AG, Alonso A, Poole DC, Viegas C, Barbera JA, Rodriguez-Roisin R, Ferrer A, Wagner PD (1992) Effects of training on muscle O2 transport at O2max. J Appl Physiol (1985) 73:1067–1076

    CAS  Google Scholar 

  • Rossiter HB (2011) Exercise: kinetic considerations for gas exchange. Compr Physiol 1:203–244

    PubMed  Google Scholar 

  • Roughton FJW (1964) Transport of oxygen and carbon dioxide. In: Fenn WO, Rahn H (eds) Handbook of physiology, section 3: respiration, vol 1. American Physiological Society, Washington, DC, pp 767–825

    Google Scholar 

  • Roy TK, Popel AS (1996) Theoretical predictions of end-capillary PO2 in muscles of athletic and nonathletic animals at O2max. Am J Physiol 271(2 Pt 2):H721-737

    CAS  PubMed  Google Scholar 

  • Rumsey WL, Vanderkooi JM, Wilson DF (1988) Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue. Science 241(4873):1649–1651

    CAS  PubMed  Google Scholar 

  • Sakai T, Hosoyamada Y (2013) Are the precapillary sphincters and metarterioles universal components of the microcirculation? An historical review. J Physiol Sci 63:319–331

    PubMed  PubMed Central  Google Scholar 

  • Sarelius IH (1986) Cell flow path influences transit time through striated muscle capillaries. Am J Physiol 250(6 Pt 2):H899-907

    CAS  PubMed  Google Scholar 

  • Segal SS (2015) Integration and modulation of intercellular signaling underlying blood flow control. J Vasc Res 52:136–157

    CAS  PubMed  Google Scholar 

  • Shibata M, Ichioka S, Kamiya A (2005) Estimating oxygen consumption rates of arteriolar walls under physiological conditions in rat skeletal muscle. Am J Physiol Heart Circ Physiol 289:H295-300

    CAS  PubMed  Google Scholar 

  • Silver IA (1965) Some observations on the cerebral cortex with an ultramicro, membrane covered, oxygen electrode. Med Electro Biol Eng 3:377–387

    CAS  Google Scholar 

  • Socha MJ, Segal SS (2018) Microvascular mechanisms limiting skeletal muscle blood flow with advancing age. J Appl Physiol (1985) 125:1851–1859

    CAS  PubMed Central  Google Scholar 

  • Stary CM, Hogan MC (1999) Effect of varied extracellular PO2 on muscle performance in Xenopus single skeletal muscle fibers. J Appl Physiol (1985) 86:1812–1816

    CAS  Google Scholar 

  • Tsai AG, Friesenecker B, Mazzoni MC, Kerger H, Buerk DG, Johnson PC, Intaglietta M (1998) Microvascular and tissue oxygen gradients in the rat mesentery. Proc Natl Acad Sci USA 95:6590–6595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai AG, Cabrales P, Hangai-Hoger N, Intaglietta M (2004) Oxygen distribution and respiration by the microcirculation. Antioxid Redox Signal 6:1011–1018

    CAS  PubMed  Google Scholar 

  • Tsai AG, Friesenecker B, Cabrales P, Hangai-Hoger N, Intaglietta M (2006) The vascular wall as a regulator of tissue oxygenation. Curr Opin Nephrol Hypertens 15:67–71

    CAS  PubMed  Google Scholar 

  • van Beek JH, Elzinga G (1987) Diffusional shunting of oxygen in saline-perfused isolated rabbit heart is negligible. Pflug Arch 410:263–271

    Google Scholar 

  • van Teeffelen JW, Segal SS (2000) Effect of motor unit recruitment on functional vasodilatation in hamster retractor muscle. J Physiol 524(Pt 1):267–278

    PubMed Central  Google Scholar 

  • Vincent AE, White K, Davey T, Philips J, Ogden RT, Lawless C, Warren C, Hall MG, Ng YS, Falkous G, Holden T, Deehan D, Taylor RW, Turnbull DM, Picard M (2019) Quantitative 3D mapping of the human skeletal muscle mitochondrial network. Cell Rep 26:996-1009.e4 (Erratum in: Cell Rep. 2019;27:321)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voter WA, Gayeski TE (1995) Determination of myoglobin saturation of frozen specimens using a reflecting cryospectrophotometer. Am J Physiol 269(4 Pt 2):H1328-1341

    CAS  PubMed  Google Scholar 

  • Wagner W (1997) Recruitment of gas exchange vessels. In: Crystal RG, West JB, Weibel ER, Barnes PJ (eds) The lung: scientific foundations. Raven Press, New York, pp 1537–1547

    Google Scholar 

  • Wagner PD (2017) Operation Everest II and the 1978 Habeler/Messner ascent of Everest without bottled O2: what might they have in common? J Appl Physiol (1985) 123:1682–1688

    Google Scholar 

  • Wagner PD, Roca J, Hogan MC, Poole DC, Bebout DC, Haab P (1990) Experimental support for the theory of diffusion limitation of maximum oxygen uptake. Adv Exp Med Biol 277:825–833

    CAS  PubMed  Google Scholar 

  • Whipp BJ, Wasserman K (1972) Oxygen uptake kinetics for various intensities of constant-load work. J Appl Physiol 33:351–356

    CAS  PubMed  Google Scholar 

  • Wilson DF, Erecińska M, Drown C, Silver IA (1977) Effect of oxygen tension on cellular energetics. Am J Physiol 233:C135-140

    CAS  PubMed  Google Scholar 

  • Wittenberg JB (1970) Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle. Physiol Rev 50:559–636

    CAS  PubMed  Google Scholar 

  • Wittenberg BA, Wittenberg JB (1989) Transport of oxygen in muscle. Annu Rev Physiol 51:857–878

    CAS  PubMed  Google Scholar 

  • Wittenberg JB, Wittenberg BA (2003) Myoglobin function reassessed. J Exp Biol 206(Pt 12):2011–2020

    CAS  PubMed  Google Scholar 

  • Wyman J (1966) Facilitated diffusion and the possible role of myoglobin as a transport mechanism. J Biol Chem 241:115–121

    CAS  PubMed  Google Scholar 

  • Yamada T, Furuichi Y, Takakura H, Hashimoto T, Hanai Y, Jue T, Masuda K (2013) Interaction between myoglobin and mitochondria in rat skeletal muscle. J Appl Physiol (1985) 114:490–497

    CAS  Google Scholar 

  • Ye JM, Colquhoun EQ, Clark MG (1990a) A comparison of vasopressin and noradrenaline on oxygen uptake by perfused rat hindlimb, kidney, intestine and mesenteric arcade suggests that it is in part due to contractile work by blood vessels. Gen Pharmacol 21:805–810

    CAS  PubMed  Google Scholar 

  • Ye JM, Colquhoun EQ, Hettiarachchi M, Clark MG (1990b) Flow-induced oxygen uptake by the perfused rat hindlimb is inhibited by vasodilators and augmented by norepinephrine: a possible role for the microvasculature in hindlimb thermogenesis. Can J Physiol Pharmacol 68:119–125

    CAS  PubMed  Google Scholar 

  • Zeller-Plumhoff B, Daly KR, Clough GF, Schneider P, Roose T (2017) Investigation of microvascular morphological measures for skeletal muscle tissue oxygenation by image-based modelling in three dimensions. J R Soc Interface 14(135):20170635

    PubMed  PubMed Central  Google Scholar 

  • Zhao P, Geyer RR, Salameh AI, Wass AB, Taki S, Huffman DE, Meyerson HJ, Gros G, Occhipinti R, Moss FJ, Boron WF (2020) Role of channels in the oxygen permeability of red blood cells. BioRxiv. https://doi.org/10.1101/2020.08.28.265066

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo L, Shiah A, Roberts WJ, Chien MT, Wagner PD, Hogan MC (2013) Low PO2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers. Am J Physiol Regul Integr Comp Physiol 304:R1009-1016

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding was provide by National Heart, Lung, and Blood Institute (Grant nos. HL-2-108328 and HL-137156-01).

Author information

Authors and Affiliations

Authors

Contributions

DCP, TIM, and TDC have read and approved the final version of this manuscript. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.

Corresponding author

Correspondence to Trenton D. Colburn.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Communicated by Michael Lindinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poole, D.C., Musch, T.I. & Colburn, T.D. Oxygen flux from capillary to mitochondria: integration of contemporary discoveries. Eur J Appl Physiol 122, 7–28 (2022). https://doi.org/10.1007/s00421-021-04854-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-021-04854-7

Keywords

Navigation