Skip to main content

Effect of sex and fatigue on quiet standing and dynamic balance and lower extremity muscle stiffness

Abstract

Purpose

The purpose of the present study was to determine whether there are sex differences in fatigue-induced changes in quiet standing and dynamic balance and establish whether changes in muscle torque and resting stiffness may explain the potential sex differences in balance responses.

Methods

Sixteen recreationally active men (age; 24.8 ± 5.0 years, height; 178.2 ± 5.6 cm, mass; 77.8 ± 13.2 kg) and 10 women (age; 21.0 ± 1.6 years, height; 167 ± 5.3 cm, mass; 61.3 ± 8.9 kg) were assessed for postural sway, Y balance test performance, isokinetic and isometric knee extensor torque and resting stiffness of the vastus lateralis (VL), gastrocnemius lateralis (GL) and Achilles tendon (AT) before and immediately after fatiguing exercise. The fatigue protocol consisted of five sets of 20-drop jumps.

Results

The fatiguing exercise elicited similar magnitude (effects size; ES) reductions in muscle torque (men; ES = 0.45–0.80, women; ES = 0.46–0.52), dynamic balance (men; ES = 0.45–0.74, women; ES = 0.47–0.79) and resting VL stiffness (men; ES = 0.46, women; ES = 0.36) in men and women (all p < 0.05). For quiet standing balance, fatigue induced an increase in postural sway metrics (ES = 0.64–1.28) and reduction in resting GL stiffness (ES = 0.40) in men (both p < 0.001) but not women (p > 0.05).

Conclusion

Fatiguing exercise, when producing a similar level of force reduction, induces similar magnitude reductions in dynamic postural control and resting VL stiffness in men and women. Distinct deteriorations in quiet standing balance in men but not women were accompanied by modifications in calf muscle stiffness following exercise-induced muscle fatigue.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

ANOVA:

Analysis of variance

AP:

Anteroposterior

AT:

Achilles tendon

COP:

Centre of pressure

CV:

Coefficient of variation

ES:

Effect size

GL:

Gastrocnemius lateralis

IPAQ:

International Physical Activity Questionnaire

ML:

Mediolateral

MVC:

Maximal voluntary contraction

VL:

Vastus lateralis

References

  1. Andonian P, Viallon M, Le Goff C, De Bourguignon C, Tourel C, Morel J et al (2016) Shear-Wave elastography assessments of quadriceps stiffness changes prior to, during and after prolonged exercise: a longitudinal study during an extreme mountain ultra-marathon. PLoS ONE 11:e0161855. https://doi.org/10.1371/journal.pone.0161855

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Bannon HM, Hakansson NA, Jakobsen MD, Sundstrup E, Jorgensen MJ (2018) The effects of a fatiguing lifting task on postural sway among males and females. Hum Mov Sci 59:193–200. https://doi.org/10.1016/j.humov.2018.03.008

    Article  PubMed  Google Scholar 

  3. Behm DG, Bambury A, Cahill F, Power K (2004) Effect of acute static stretching on force, balance, reaction time, and movement time. Med Sci Sport Exerc 36(8):1397–1402. https://doi.org/10.1249/01.mss.0000135788.23012.5f

    Article  Google Scholar 

  4. Bizid R, Margnes E, François Y, Jully JL, Gonzalez G, Dupui P, Paillard T (2009) Effects of knee and ankle muscle fatigue on postural control in the unipedal stance. Eur J Appl Physiol 106(3):375–380. https://doi.org/10.1007/s00421-009-1029-2

    Article  PubMed  Google Scholar 

  5. Bizzini M, Mannion AF (2003) Reliability of a new, hand-held device for assessing skeletal muscle stiffness. Clin Biomech 18(5):459–461. https://doi.org/10.1016/s0268-0033(03)00042-1

    Article  Google Scholar 

  6. Blackburn JT, Padua DA, Riemann BL, Guskiewicz KM (2004) The relationships between active extensibility, and passive and active stiffness of the knee flexors. J Electromyogr Kinesiol 14(6):683–691. https://doi.org/10.1016/j.jelekin.2004.04.001

    Article  PubMed  Google Scholar 

  7. Cè E, Longo S, Limonta E, Coratella G, Rampichini S, Esposito F (2020) Peripheral fatigue: new mechanistic insights from recent technologies. Eur J Appl Physiol 120(1):17–39. https://doi.org/10.1007/s00421-019-04264-w

    Article  PubMed  Google Scholar 

  8. Chalchat E, Gennisson JL, Peñailillo L, Oger M, Malgoyre A, Charlot K, Bourrilhon C, Siracusa J, Garcia-Vicencio S (2020) Changes in the viscoelastic properties of the vastus lateralis muscle with fatigue. Front Physiol 11:307. https://doi.org/10.3389/fphys.2020.00307

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cheng AJ, Rice CL (2005) Fatigue and recovery of power and isometric torque following isotonic knee extensions. J Appl Physiol 99(4):1446–1452. https://doi.org/10.1152/japplphysiol.00452.2005

    Article  PubMed  Google Scholar 

  10. Davidson BS, Madigan ML, Nussbaum M (2004) Effects of lumbar extensor fatigue and fatigue rate on postural sway. Eur J Appl Physiol 93(1):183–189. https://doi.org/10.1007/s00421-004-1195-1

    CAS  Article  PubMed  Google Scholar 

  11. Feng YN, Li YP, Liu CL, Zhang ZJ (2018) Assessing the elastic properties of skeletal muscle and tendon using shearwave ultrasound elastography and MyotonPRO. Sci Rep 8(1):1–9. https://doi.org/10.1038/s41598-018-34719-7

    CAS  Article  Google Scholar 

  12. Ferri A, Scaglioni G, Pousson M, Capodaglio P, Van Hoecke J, Narici MV (2003) Strength and power changes of the human plantar flexors and knee extensors in response to resistance training in old age. Acta Physiol Scand 177(1):69–78. https://doi.org/10.1046/j.1365-201X.2003.01050.x

    CAS  Article  PubMed  Google Scholar 

  13. Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725

    CAS  Article  Google Scholar 

  14. Gehring D, Melnyk M, Gollhofer A (2009) Gender and fatigue have influence on knee joint control strategies during landing. Clin Biomech 24(1):82–87. https://doi.org/10.1016/j.clinbiomech.2008.07.005

    Article  Google Scholar 

  15. Goodall S, Howatson G (2008) The effects of multiple cold water immersions on indices of muscle damage. J Sport Sci Med 7(2):235

    Google Scholar 

  16. Gribble PA, Hertel J (2003) Considerations for normalizing measures of the star excursion balance test. Meas Phys Educ Exerc Sci 7(2):89–100. https://doi.org/10.1207/S15327841MPEE0702_3

    Article  Google Scholar 

  17. Gribble PA, Hertel J (2004) Effect of lower-extremity muscle fatigue on postural control. Arch Phys Med Rehabil 85(4):589–592. https://doi.org/10.1016/j.apmr.2003.06.031

    Article  PubMed  Google Scholar 

  18. Gribble PA, Robinson RH, Hertel J, Denegar CR (2009) The effects of gender and fatigue on dynamic postural control. J Sport Rehabil 18(2):240–257. https://doi.org/10.1123/jsr.18.2.240

    Article  PubMed  Google Scholar 

  19. Hill MW, Higgins MF, Price MJ (2016) The effect of high-intensity cycling training on postural sway during standing under rested and fatigued conditions in healthy young adults. Eur J Appl Physiol 116(10):1965–1974. https://doi.org/10.1007/s00421-016-3448-1

    Article  PubMed  Google Scholar 

  20. Hunter SK (2009) Sex differences and mechanisms of task-specific muscle fatigue. Exerc Sport Sci Rev 37(3):113. https://doi.org/10.1097/JES.0b013e3181aa63e2

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hunter SK (2016) The relevance of sex differences in performance fatigability. Med Sci Sport Exerc 48(11):2247. https://doi.org/10.1249/MSS.0000000000000928

    Article  Google Scholar 

  22. Johnston W, Dolan K, Reid N, Coughlan GF, Caulfield B (2017) Investigating the effects of maximal anaerobic fatigue on dynamic postural control using the Y-Balance Test. J Sci Med Sport 21(1):103–108. https://doi.org/10.1016/j.jsams.2017.06.007

    Article  PubMed  Google Scholar 

  23. Kawczyński A, Mroczek D, Andersen RE, Stefaniak T, Arendt-Nielsen L, Madeleine P (2018) Trapezius viscoelastic properties are heterogeneously affected by eccentric exercise. J Sci Med Sport 21(8):864–869. https://doi.org/10.1016/j.jsams.2018.01.005

    Article  PubMed  Google Scholar 

  24. Kernozek TW, Torry MR, van Hoof H, Cowley H, Tanner S (2005) Gender differences in frontal and sagittal plane biomechanics during drop landings. Med Sci Sports Exerc 37(6):1003–1012

    PubMed  Google Scholar 

  25. Kisilewicz A, Madeleine P, Ignasiak Z, Ciszek B, Kawczynski A, Larsen RG (2020) Eccentric exercise reduces upper trapezius muscle stiffness assessed by shear wave elastography and myotonometry. Front Bioeng Biotechnol 8:928. https://doi.org/10.3389/fbioe.2020.00928

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lacourpaille L, Nordez A, Hug F, Couturier A, Dibie C, Guilhem G (2014) Time-course effect of exercise-induced muscle damage on localized muscle mechanical properties assessed using elastography. Acta Physiol 211(1):135–146. https://doi.org/10.1111/apha.12272

    CAS  Article  Google Scholar 

  27. Laffaye G, Wagner PP, Tombleson TI (2014) Countermovement jump height: gender and sport-specific differences in the force-time variables. J Strength Cond Res 28(4):1096–1105. https://doi.org/10.1519/JSC.0b013e3182a1db03

    Article  PubMed  Google Scholar 

  28. Lepers R, Bigard AX, Diard JP, Gouteyron JF, Guezennec CY (1997) Posture control after prolonged exercise. Eur J Appl Physiol Occup Physiol 76(1):55–61. https://doi.org/10.1007/s004210050212

    CAS  Article  PubMed  Google Scholar 

  29. Lin D, Nussbaum MA, Seol H, Singh NB, Madigan ML, Wojcik LA (2009) Acute effects of localized muscle fatigue on postural control and patterns of recovery during upright stance: influence of fatigue location and age. Eur J Appl Physiol 106(3):425–434. https://doi.org/10.1007/s00421-009-1026-5

    Article  PubMed  Google Scholar 

  30. McHugh MP (2003) Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scan J Med Sci Sport 13(2):88–97. https://doi.org/10.1034/j.1600-0838.2003.02477.x

    Article  Google Scholar 

  31. Miyama M, Nosaka KA (2004) Influence of surface on muscle damage and soreness induced by consecutive drop jumps. J Strength Cond Res 18(2):206–211. https://doi.org/10.1519/R-13353.1

    Article  PubMed  Google Scholar 

  32. Morasso PG, Schieppati M (1999) Can muscle stiffness alone stabilize upright standing? J Neurophysiol 82(3):1622–1626. https://doi.org/10.1152/jn.1999.82.3.1622

    CAS  Article  PubMed  Google Scholar 

  33. Nagano A, Yoshioka S, Hay DC, Himeno R, Fukashiro S (2006) Influence of vision and static stretch of the calf muscles on postural sway during quiet standing. Hum Mov Sci 25(3):422–434. https://doi.org/10.1016/j.humov.2005.12.005

    Article  PubMed  Google Scholar 

  34. Nashner LM (1976) Adapting reflexes controlling the human posture. Exp Brain Res 26(1):59–72. https://doi.org/10.1007/BF00235249

    CAS  Article  PubMed  Google Scholar 

  35. Objero CN, Wdowski MM, Hill MW (2019) Can arm movements improve postural stability during challenging standing balance tasks? Gait Posture 74:71–75. https://doi.org/10.1016/j.gaitpost.2019.08.010

    Article  PubMed  Google Scholar 

  36. Paillard T (2012) Effects of general and local fatigue on postural control: a review. Neurosci Biobehav Rev 36(1):162–176. https://doi.org/10.1016/j.neubiorev.2011.05.009

    Article  PubMed  Google Scholar 

  37. Pincivero DM, Gandaio CB, Ito Y (2003) Gender-specific knee extensor torque, flexor torque, and muscle fatigue responses during maximal effort contractions. Eur J Appl Physiol 89(2):134–141. https://doi.org/10.1007/s00421-002-0739-5

    Article  PubMed  Google Scholar 

  38. Pinsault N, Vuillerme N (2009) Test–retest reliability of centre of foot pressure measures to assess postural control during unperturbed stance. Med Eng Phys 31(2):276–286. https://doi.org/10.1016/j.medengphy.2008.08.003

    Article  PubMed  Google Scholar 

  39. Plisky PJ, Rauh MJ, Kaminski TW, Underwood FB (2006) Star excursion balance test as a predictor of lower extremity injury in high school basketball players. J Orthop Sports Phys Ther 36(12):911–919. https://doi.org/10.2519/jospt.2006.2244

    Article  PubMed  Google Scholar 

  40. Proske U, Morgan DL, Gregory JE (1993) Thixotropy in skeletal muscle and in muscle spindles: a review. Prog Neurobiol 41(6):705–721. https://doi.org/10.1016/0301-0082(93)90032-n

    CAS  Article  PubMed  Google Scholar 

  41. Sakanaka TE, Lakie M, Reynolds RF (2016) Sway-dependent changes in standing ankle stiffness caused by muscle thixotropy. J Pysiol 594(3):781–793. https://doi.org/10.1113/JP271137

    CAS  Article  Google Scholar 

  42. Sale KJ, Minahan CL, de Jonge XA, Ackerman KE, Sipilä S, Constantini NW, Lebrun CM, Hackney AC (2021) Methodological considerations for studies in sport and exercise science with women as participants: a working guide for standards of practice for research on women. Sports Med 16:1–9. https://doi.org/10.1007/s40279-021-01435-8

    Article  Google Scholar 

  43. Saxton JM, Clarkson PM, James R, Miles M, Westerfer M, Clark S et al (1995) Neuromuscular dysfunction following eccentric exercise. Med Sci Sports Exerc 27:1185. https://doi.org/10.1249/00005768-199508000-00013

    CAS  Article  PubMed  Google Scholar 

  44. Shin S, Milosevic M, Chung CM, Lee Y (2019) Contractile properties of superficial skeletal muscle affect postural control in healthy young adults: a test of the rambling and trembling hypothesis. PLoS ONE 14(10):e0223850. https://doi.org/10.1371/journal.pone.0223850

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Siracusa J, Charlot K, Malgoyre A, Conort S, Tardo-Dino PE, Bourrilhon C, Garcia-Vicencio S (2019) Resting muscle shear modulus measured with ultrasound shear-wave elastography as an alternative tool to assess muscle fatigue in humans. Front Physiol 10:626. https://doi.org/10.3389/fphys.2019.00626

    Article  PubMed  PubMed Central  Google Scholar 

  46. Skurvydas A, Jascaninas J, Zachovajevas P (2000) Changes in height of jump, maximal voluntary contraction force and low-frequency fatigue after 100 intermittent or continuous jumps with maximal intensity. Acta Physiol Scand 169(1):55–62. https://doi.org/10.1046/j.1365-201x.2000.00692.x

    CAS  Article  PubMed  Google Scholar 

  47. Skurvydas A, Brazaitis M, Venckūnas T, Kamandulis S (2011) Predictive value of strength loss as an indicator of muscle damage across multiple drop jumps. Appl Physiol Nutr Metab 36(3):353–360. https://doi.org/10.1139/h11-023

    Article  PubMed  Google Scholar 

  48. Skurvydas A, Mamkus G, Kamandulis S, Dudoniene V, Valanciene D, Westerblad H (2016) Mechanisms of force depression caused by different types of physical exercise studied by direct electrical stimulation of human quadriceps muscle. Euro J Appl Physiol 116(11):2215–2224

  49. Springer BK, Pincivero DM (2009) The effects of localized muscle and whole-body fatigue on single-leg balance between healthy men and women. Gait Posture 30(1):50–54. https://doi.org/10.1016/j.gaitpost.2009.02.014

    Article  PubMed  Google Scholar 

  50. Strang AJ, Berg WP, Hieronymus M (2009) Fatigue-induced early onset of anticipatory postural adjustments in non-fatigued muscles: support for a centrally mediated adaptation. Exp Brain Res 197(3):245–254. https://doi.org/10.1007/s00221-009-1908-0

    Article  PubMed  Google Scholar 

  51. Taş S, Salkın Y (2019) An investigation of the sex-related differences in the stiffness of the Achilles tendon and gastrocnemius muscle: inter-observer reliability and inter-day repeatability and the effect of ankle joint motion. Foot 41:44–50. https://doi.org/10.1016/j.foot.2019.09.003

    Article  Google Scholar 

  52. Wang D, De Vito G, Ditroilo M, Delahunt E (2017a) Different effect of local and general fatigue on knee joint stiffness. Med Sci Sport Exerc 49(1):173–182. https://doi.org/10.1249/MSS.0000000000001086

    Article  Google Scholar 

  53. Wang D, De Vito G, Ditroilo M, Delahunt E (2017b) Effect of sex and fatigue on muscle stiffness and musculoarticular stiffness of the knee joint in a young active population. J Sport Sci 35(16):1582–1591. https://doi.org/10.1080/02640414.2016.1225973

    Article  Google Scholar 

  54. Whyte E, Burke A, White E, Moran K (2015) A high-intensity, intermittent exercise protocol and dynamic postural control in men and women. J Athl Train 4:392–399. https://doi.org/10.4085/1062-6050-49.6.08

    Article  Google Scholar 

  55. Wojcik LA, Nussbaum MA, Lin D, Shibata PA, Madigan ML (2011) Age and gender moderate the effects of localized muscle fatigue on lower extremity joint torques used during quiet stance. Hum Mov Sci 30(3):574–583. https://doi.org/10.1016/j.humov.2010.03.008

    Article  PubMed  Google Scholar 

  56. Xu J, Fu SN, Zhou D, Huang C, Hug F (2019) Relationship between pre-exercise muscle stiffness and muscle damage induced by eccentric exercise. Eur J Sport Sci 19(4):508–516. https://doi.org/10.1080/17461391.2018.1535625

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

MH and MW conceived and designed the research. MW, KR and MH conducted data collection. MH analysed the data and wrote the manuscript. All authors read, revised and approved the manuscript.

Corresponding author

Correspondence to M. Hill.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Lori Ann Vallis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hill, M., Rosicka, K. & Wdowski, M. Effect of sex and fatigue on quiet standing and dynamic balance and lower extremity muscle stiffness. Eur J Appl Physiol (2021). https://doi.org/10.1007/s00421-021-04831-0

Download citation

Keywords

  • Muscle fatigue
  • Muscle damage
  • Balance
  • Myotonometry
  • Muscle torque
  • Gender