Skip to main content

Effect of breath-hold on the responses of arterial blood pressure and cerebral blood velocity to isometric exercise

Abstract

Purpose

The present study examined the effect of breath-hold without a Valsalva maneuver during isometric exercise on arterial blood pressure (ABP) and cerebral blood flow (CBF).

Methods

Twenty healthy adults (15 men and five women) randomly performed only breath-hold without a Valsalva maneuver (BH), and an isometric handgrip exercise for 30 s at 40% of individual maximal voluntary contraction with continuous breathing (IHG) and with breath-hold without the Valsalva maneuver (IHG–BH). Mean ABP (MAP) and blood velocity in the middle (MCA Vmean) and posterior cerebral arteries (PCA Vmean) were continuously measured throughout each protocol.

Results

MAP was elevated during the IHG–BH compared with IHG (P < 0.001) and BH (P = 0.001). Similarly, both MCA Vmean and PCA Vmean were higher during IHG–BH compared with IHG and BH (all P < 0.001). Moreover, the relative change in MAP from the baseline was correlated with that in both cerebral blood velocities during the BH (MCA Vmean: r = 0.739, P < 0.001 and PCA Vmean: r = 0.570, P = 0.009) and IHG–BH (MCA Vmean: r = 0.755, P < 0.001 and PCA Vmean: r = 0.617, P = 0.003) condition, but not the IHG condition (P = 0.154 and P = 0.306).

Conclusion

These results indicate that during isometric exercise, a breath-hold enhances an exercise-induced increase in MAP and, consequently, MCA Vmean and PCA Vmean.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Availability of data and materials

All the data related to the present manuscript are presented in the tables and figures. Additional data can be provided upon reasonable request.

Code availability

Not applicable.

Abbreviations

ABP:

Arterial blood pressure

BH:

Breath-hold

CBF:

Cerebral blood flow

CO:

Cardiac output

HR:

Heart rate

IHG:

Isometric handgrip exercise

MAP:

Mean arterial pressure

MCA:

Middle cerebral artery

MVC:

Maximal voluntary contraction

PCA:

Posterior cerebral artery

P ETCO2 :

End-tidal partial pressure of carbon dioxide

SV:

Stroke volume

TCD:

Transcranial Doppler ultrasonography

V E :

Minute ventilation

References

  1. Ainslie PN, Duffin J (2009) Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: Mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol 296:R1473–1495. https://doi.org/10.1152/ajpregu.91008.2008

    CAS  Article  PubMed  Google Scholar 

  2. Ainslie PN, Hoiland RL (2014) Transcranial doppler ultrasound: valid, invalid, or both? J Appl Physiol 117:1081–1083. https://doi.org/10.1152/japplphysiol.00854.2014

    Article  PubMed  Google Scholar 

  3. Baross AW, Wiles JD, Swaine IL (2012) Effects of the intensity of leg isometric training on the vasculature of trained and untrained limbs and resting blood pressure in middle-aged men. Int J Vasc Med 2012:964697. https://doi.org/10.1155/2012/964697

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carlson DJ, Dieberg G, Hess NC et al (2014) Isometric exercise training for blood pressure management: a systematic review and meta-analysis. Mayo Clin Proc 89:327–334. https://doi.org/10.1016/j.mayocp.2013.10.030

    Article  Google Scholar 

  5. Coverdale NS, Gati JS, Opalevych O et al (2014) Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia. J Appl Physiol 117:1090–1096. https://doi.org/10.1152/japplphysiol.00285.2014

    Article  PubMed  Google Scholar 

  6. Coverdale NS, Lalande S, Perrotta A, Shoemaker JK (2015) Heterogeneous patterns of vasoreactivity in the middle cerebral and internal carotid arteries. Am J Physiol Heart Circ Physiol 308:H1030–H1038. https://doi.org/10.1152/ajpheart.00761.2014

    CAS  Article  PubMed  Google Scholar 

  7. Devereux GR, Wiles JD, Swaine IL (2010) Reductions in resting blood pressure after 4 weeks of isometric exercise training. Eur J Appl Physiol 109:601–606. https://doi.org/10.1007/s00421-010-1394-x

    Article  PubMed  Google Scholar 

  8. Edvinsson L, Owman C, Sjöberg NO (1976) Autonomic nerves, mast cells, and amine receptors in human brain vessels. a histochemical and pharmacological study. Brain Res 115:377–393. https://doi.org/10.1016/0006-8993(76)90356-5

    CAS  Article  PubMed  Google Scholar 

  9. Fagoni N, Taboni A, Vinetti G et al (2017) Alveolar gas composition during maximal and interrupted apnoeas in ambient air and pure oxygen. Respir Physiol Neurobiol 235:45–51. https://doi.org/10.1016/j.resp.2016.10.002

    Article  PubMed  Google Scholar 

  10. Hackett DA, Chow CM (2013) The valsalva maneuver: Its effect on intra-abdominal pressure and safety issues during resistance exercise. J Strength Cond Res 27:2338–2345. https://doi.org/10.1519/JSC.0b013e31827de07d

    Article  PubMed  Google Scholar 

  11. Hamner JW, Tan CO, Lee K et al (2010) Sympathetic control of the cerebral vasculature in humans. Stroke 41:102–109. https://doi.org/10.1161/STROKEAHA.109.557132

    CAS  Article  PubMed  Google Scholar 

  12. Haykowsky MJ, Findlay JM, Ignaszewski AP (1996) Aneurysmal subarachnoid hemorrhage associated with weight training: three case reports. Clin J Sport Med 6:52–55. https://doi.org/10.1097/00042752-199601000-00011

    CAS  Article  PubMed  Google Scholar 

  13. Haykowsky MJ, Eves ND, Warburton DER, Findlay MJ (2003) Resistance exercise, the valsalva maneuver, and cerebrovascular transmural pressure. Med Sci Sports Exerc 35:65–68. https://doi.org/10.1097/00005768-200301000-00011

    Article  PubMed  Google Scholar 

  14. Hirasawa A, Sato K, Yoneya M et al (2016) Heterogeneous regulation of brain blood flow during low-intensity resistance exercise. Med Sci Sports Exerc 48:1829–1834. https://doi.org/10.1249/MSS.0000000000000948

    CAS  Article  PubMed  Google Scholar 

  15. Krejza J, Rudzinski W, Arkuszewski M et al (2013) Cerebrovascular reactivity across the menstrual cycle in young healthy women. Neuroradiol J 26:413–419. https://doi.org/10.1177/197140091302600406

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Levine BD, Giller CA, Lane LD et al (1994) Cerebral versus systemic hemodynamics during graded orthostatic stress in humans. Circulation 90:298–306. https://doi.org/10.1161/01.cir.90.1.298

    CAS  Article  PubMed  Google Scholar 

  17. Linsenbardt ST, Thomas TR, Madsen RW (1992) Effect of breathing techniques on blood pressure response to resistance exercise. Br J Sports Med 26:97–100. https://doi.org/10.1136/bjsm.26.2.97

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. MacDougall JD, McKelvie RS, Moroz DE et al (1992) Factors affecting blood pressure during heavy weight lifting and static contractions. J Appl Physiol 73:1590–1597. https://doi.org/10.1152/jappl.1992.73.4.1590

    CAS  Article  PubMed  Google Scholar 

  19. Millar PJ, Levy AS, Mcgowan CL et al (2013) Isometric handgrip training lowers blood pressure and increases heart rate complexity in medicated hypertensive patients. Scand J Med Sci Sport 23:620–626. https://doi.org/10.1111/j.1600-0838.2011.01435.x

    CAS  Article  Google Scholar 

  20. Millar PJ, McGowan CL, Cornelissen VA et al (2014) Evidence for the role of isometric exercise training in reducing blood pressure: potential mechanisms and future directions. Sport Med 44:345–356. https://doi.org/10.1007/s40279-013-0118-x

    Article  Google Scholar 

  21. Perry BG, Lucas SJE (2021) The acute cardiorespiratory and cerebrovascular response to resistance exercise. Sport Med 7:1–19. https://doi.org/10.1186/s40798-021-00314-w

    Article  Google Scholar 

  22. Perry BG, De Hamel T, Thomas KN et al (2020) Cerebrovascular haemodynamics during isometric resistance exercise with and without the Valsalva manoeuvre. Eur J Appl Physiol 120:467–479. https://doi.org/10.1007/s00421-019-04291-7

    Article  PubMed  Google Scholar 

  23. Pott F, Van Lieshout JJ, Ide K et al (2003) Middle cerebral artery blood velocity during intense static exercise is dominated by a Valsalva maneuver. J Appl Physiol 94:1335–1344. https://doi.org/10.1152/japplphysiol.00457.2002

    Article  PubMed  Google Scholar 

  24. Sato K, Hirasawa A, Tsunoda N et al (2010) Cerebrovascular response during heavy upper body exercise: effect of mode of ventilation on blood flow velocity in the middle cerebral artery. Adv Exp Med Biol 662:347–352. https://doi.org/10.1007/978-1-4419-1241-1_50

    CAS  Article  PubMed  Google Scholar 

  25. Sato K, Fisher JP, Seifert T et al (2012a) Blood flow in internal carotid and vertebral arteries during orthostatic stress. Exp Physiol 97:1272–1280. https://doi.org/10.1113/expphysiol.2012.064774

    Article  PubMed  Google Scholar 

  26. Sato K, Sadamoto T, Hirasawa A et al (2012b) Differential blood flow responses to CO2 in human internal and external carotid and vertebral arteries. J Physiol 590:3277–3290. https://doi.org/10.1113/jphysiol.2012.230425

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Smolander J, Aminoff T, Korhonen I et al (1998) Heart rate and blood pressure responses to isometric exercise in young and older men. Eur J Appl Physiol Occup Physiol 77:439–444. https://doi.org/10.1007/s004210050357

    CAS  Article  PubMed  Google Scholar 

  28. Taboni A, Fagoni N, Fontolliet T et al (2020) Breath holding as an example of extreme hypoventilation: experimental testing of a new model describing alveolar gas pathways. Exp Physiol 105:2216–2225. https://doi.org/10.1113/EP088977

    CAS  Article  PubMed  Google Scholar 

  29. Trembach N, Zabolotskikh I (2017) Breath-holding test in evaluation of peripheral chemoreflex sensitivity in healthy subjects. Respir Physiol Neurobiol 235:79–82. https://doi.org/10.1016/j.resp.2016.10.005

    Article  PubMed  Google Scholar 

  30. Verbree J, Bronzwaer ASGT, Ghariq E et al (2014) Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI. J Appl Physiol 117:1084–1089. https://doi.org/10.1152/japplphysiol.00651.2014

    Article  PubMed  Google Scholar 

  31. Washio T, Sasaki H, Ogoh S (2017) Transcranial Doppler-determined change in posterior cerebral artery blood flow velocity does not reflect vertebral artery blood flow during exercise. Am J Physiol Circ Physiol 312:H827–H831. https://doi.org/10.1152/ajpheart.00676.2016

    Article  Google Scholar 

  32. Washio T, Vranish JR, Kaur J et al (2018) Acute reduction in posterior cerebral blood flow following isometric handgrip exercise is augmented by lower body negative pressure. Physiol Rep 6:e13886. https://doi.org/10.14814/phy2.13886

    Article  PubMed  PubMed Central  Google Scholar 

  33. Washio T, Watanabe H, Ogoh S (2020) Dynamic cerebral autoregulation in anterior and posterior cerebral circulation during cold pressor test. J Physiol Sci 70:1–8. https://doi.org/10.1186/s12576-020-00732-7

    Article  PubMed  PubMed Central  Google Scholar 

  34. Webb AJS, Paolucci M, Mazzucco S et al (2020) Confounding of cerebral blood flow velocity by blood pressure during breath holding or hyperventilation in transient ischemic attack or stroke. Stroke 51:468–474. https://doi.org/10.1161/STROKEAHA.119.027829

    Article  PubMed  PubMed Central  Google Scholar 

  35. Weippert M, Behrens K, Rieger A et al (2013) Heart rate variability and blood pressure during dynamic and static exercise at similar heart rate levels. PLoS One 8:e83690. https://doi.org/10.1371/journal.pone.0083690

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wiles JD, Coleman DA, Swaine IL (2010) The effects of performing isometric training at two exercise intensities in healthy young males. Eur J Appl Physiol 108:419–428. https://doi.org/10.1007/s00421-009-1025-6

    Article  PubMed  Google Scholar 

  37. Wityk RJ, Restrepo L (2003) Hypoperfusion and its augmentation in patients with brain ischemia. Curr Treat Options Cardiovasc Med 5:193–199. https://doi.org/10.1007/s11936-003-0003-2

    Article  PubMed  Google Scholar 

  38. Zatsiorsky VM, Kraemer WJ, Fry AC (2021) Science and practice of strength training, 3rd edn. Human Kinetics, Champiagn, pp 123–124

Download references

Acknowledgements

The authors appreciate the time and effort expended by the volunteer subjects.

Author information

Affiliations

Authors

Contributions

HW and SO: conception and design of research; HW performed experiments; HW analyzed data; HW, TW, SS, and SO interpreted results of experiments; HW prepared figures; HW, TW, SS, and SO drafted manuscript; all authors edited and revised manuscript; all authors approved final version of manuscript.

Corresponding author

Correspondence to Shigehiko Ogoh.

Ethics declarations

Conflict of interest

All authors had no conflict of interest, including financial interests, relationships, and affiliations to declare in the present manuscript.

Ethics approval

All procedure conformed to the Declaration of Helsinki and were approved by the Institutional Review Boards of the Faculty of Science Engineering, Toyo University (Approval Number: TU2019-004) in accordance with the Declaration of Helsinki.

Consent to participate

Participants were informed of the experimental protocol and all associated risks, and all of them gave written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by I. Mark olfert.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Watanabe, H., Washio, T., Saito, S. et al. Effect of breath-hold on the responses of arterial blood pressure and cerebral blood velocity to isometric exercise. Eur J Appl Physiol (2021). https://doi.org/10.1007/s00421-021-04822-1

Download citation

Keywords

  • Cerebral hyperperfusion
  • Middle cerebral artery
  • Posterior cerebral artery
  • Handgrip exercise
  • Hypertension