Skip to main content

Strenuous exercise in warm environment is associated with improved microvascular function in sickle cell trait

Abstract

Purpose

Sickle cell trait is characterized by the presence of both normal and abnormal haemoglobin in red blood cells. The rate of exertional collapse is increased in athletes and military recruits who carry the trait, particularly in stressful environmental conditions. The aim of the present study was to investigate microvascular function and its determinants in response to intense exercise at control and warm environmental temperatures in carriers (AS) and non-carriers (AA) of sickle cell trait.

Methods

Nine AS and 11 AA, all healthy physically active young men, randomly participated in four experimental sessions (rest at 21 °C and 31 °C and cycling at 21 °C and 31 °C). All participants performed three exercises bouts as follows: 18-min submaximal exercise; an incremental test to exhaustion; and three 30-s sprints spaced with 20-s resting intervals.

Results

Skin Blood Flow (SkBF) was similar at rest between AA and AS. SkBF for all participants was higher at 31 °C than 21 °C. It was significantly higher in the AS group compared to the AA group immediately after exercise, regardless of the environmental conditions. No significant differences in hemorheological parameters, muscle damage or cardiac injury biomarkers were observed between the two groups. Our data also suggest higher oxidative stress for the AS group, with high superoxide dismutase (P = 0.044 main group effect).

Conclusion

A specific profile is identified in the AS population, with increased microvascular reactivity after maximal exercise in stressful environment and slight pro-/antioxidant imbalance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 

Abbreviations

AI%:

Aggregation index

AOPP:

Advanced oxidation protein products

CAT:

Catalase

CL :

Chlorine

CPK:

Creatine phosphokinase

CPK-MB:

Creatine phosphokinase –myoglobin

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

HSP70:

Heat shock protein 70

LDH:

Lactate dehydrogenase

K+ :

Potassium

MDA:

Malondialdehyde

MPO:

Myeloperoxidase

NO:

Oxide nitric

NT PROBNP:

N-terminal pro-brain natriuretic peptide

RBC:

Red blood cell

SCT:

Sickle cell trait

SKBF:

Skin blood flow

SOD:

Superoxide dismutase

References

  1. Alayash AI (2018) Oxidative Pathways in the Sickle Cell and Beyond. Blood Cells Mol Dis 70:78–86. https://doi.org/10.1016/j.bcmd.2017.05.009

    CAS  Article  PubMed  Google Scholar 

  2. Bilé A, Le Gallais D, Mercier B, Martinez P, Ahmaidi S, Préfaut C (1996) Anaerobic exercise components during the force-velocity test in sickle cell trait. Int J Sports Med 17(4):254–258. https://doi.org/10.1055/s-2007-972842

    Article  PubMed  Google Scholar 

  3. Buchanan BK, Siebert DM, Suchsland MLZ, Drezner JA, Asif IM, O’Connor FG, Harmon KG (2020) Sudden Death Associated with Sickle Cell Trait before and after Mandatory Screening. Sports Health. https://doi.org/10.1177/1941738120915690

    Article  PubMed  PubMed Central  Google Scholar 

  4. Charkoudian N, Stachenfeld NS (2014) Reproductive Hormone Influences on Thermoregulation in Women. In: Comprehensive Physiology (p. 793‑804). American Cancer Society. https://doi.org/10.1002/cphy.c130029

  5. Chirico EN, Faës C, Connes P, Canet-Soulas E, Martin C, Pialoux V (2016) Role of exercise-induced oxidative stress in sickle cell trait and disease. Sports Med 46(5):629–639. https://doi.org/10.1007/s40279-015-0447-z

    Article  PubMed  Google Scholar 

  6. Connes P, Sara F, Hardy-Dessources M-D, Marlin L, Etienne F, Larifla L, Saint-Martin C, Hue O (2006) Effects of short supramaximal exercise on hemorheology in sickle cell trait carriers. Eur J Appl Physiol 97(2):143–150. https://doi.org/10.1007/s00421-006-0155-3

    Article  PubMed  Google Scholar 

  7. Das SK, Hinds JE, Hardy RE, Collins JC, Mukherjee S (1993) Effects of physical stress on peroxide scavengers in normal and sickle cell trait erythrocytes. Free Radical Biol Med 14(2):139–147. https://doi.org/10.1016/0891-5849(93)90004-e

    CAS  Article  Google Scholar 

  8. Diaw M, Samb A, Diop S, Sall ND, Ba A, Cissé F, Connes P (2014) Effects of hydration and water deprivation on blood viscosity during a soccer game in sickle cell trait carriers. Br J Sports Med 48(4):326–331. https://doi.org/10.1136/bjsports-2012-091038

    Article  PubMed  Google Scholar 

  9. Diaw M, Pialoux V, Martin C, Samb A, Diop S, Faes C, Mury P, Sall Diop N, Diop S-N, Ranque B, Mbaye MN, Key NS, Connes P (2015) Sickle cell trait worsens oxidative stress, abnormal blood rheology, and vascular dysfunction in Type 2 Diabetes. Diabetes Care 38(11):2120–2127. https://doi.org/10.2337/dc15-0699

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Francisco MA, Brunt VE, Jensen KN, Lorenzo S, Minson CT (2017) Ten days of repeated local forearm heating does not affect cutaneous vascular function. J Appl Physiol 123(2):310–316. https://doi.org/10.1152/japplphysiol.00966.2016 ((Bethesda, Md.: 1985))

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Gozal D, Thiriet P, Mbala E, Wouassi D, Gelas H, Geyssant A, Lacour JR (1992) Effect of different modalities of exercise and recovery on exercise performance in subjects with sickle cell trait. Med Sci Sports Exerc 24(12):1325–1331

    CAS  Article  Google Scholar 

  12. Harmon KG, Drezner JA, Klossner D, Asif IM (2012) Sickle cell trait associated with a RR of death of 37 times in national collegiate athletic association football athletes: a database with 2 million athlete-years as the denominator. Br J Sports Med 46(5):325–330. https://doi.org/10.1136/bjsports-2011-090896

    Article  PubMed  Google Scholar 

  13. Hebbel RP, Morgan WT, Eaton JW, Hedlund BE (1988) Accelerated autoxidation and heme loss due to instability of sickle hemoglobin. Proc Natl Acad Sci USA 85(1): 237‑241. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC279519/

  14. Hedreville M, Connes P, Romana M, Magnaval G, David T, Hardy-Dessources M-D, Belloy M-S, Etienne-Julan M, Hue O (2009) Central retinal vein occlusion in a sickle cell trait carrier after a cycling race. Med Sci Sports Exerc 41(1):14–18. https://doi.org/10.12s49/MSS.0b013e31818313d0

  15. Hierso R, Waltz X, Mora P, Romana M, Lemonne N, Connes P, Hardy-Dessources M-D (2014) Effects of oxidative stress on red blood cell rheology in sickle cell patients. Br J Haematol 166(4):601–606. https://doi.org/10.1111/bjh.12912

    CAS  Article  PubMed  Google Scholar 

  16. Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J Med 54(4):287–293. https://doi.org/10.1016/j.ajme.2017.09.001

    Article  Google Scholar 

  17. Kark JA, Posey DM, Schumacher HR, Ruehle CJ (1987) Sickle-cell trait as a risk factor for sudden death in physical training. N Engl J Med 317(13):781–787. https://doi.org/10.1056/NEJM198709243171301

    CAS  Article  PubMed  Google Scholar 

  18. Key NS, Connes P, Derebail VK (2015) Negative health implications of sickle cell trait in high income countries: from the football field to the laboratory. Br J Haematol 170(1):5–14. https://doi.org/10.1111/bjh.13363

    Article  PubMed  PubMed Central  Google Scholar 

  19. Marlin L, Connes P, Antoine-Jonville S, Tripette J, Montout-Hedreville M, Sanouiller A, Etienne-Julan M, Hue O (2008) Cardiorespiratory responses during three repeated incremental exercise tests in sickle cell trait carriers. Eur J Appl Physiol 102(2):181–187. https://doi.org/10.1007/s00421-007-0570-0

    Article  PubMed  Google Scholar 

  20. Messonnier L, Samb A, Tripette J, Gogh BD, Loko G, Sall ND, Féasson L, Hue O, Lamothe S, Bogui P, Connes P (2012) Moderate endurance exercise is not a risk for rhabdomyolysis or renal failure in sickle cell trait carriers. Clin Hemorheol Microcirc 51(3):193–202. https://doi.org/10.3233/CH-2011-1524

    Article  PubMed  Google Scholar 

  21. Nader E, Skinner S, Romana M, Fort R, Lemonne N, Guillot N, Gauthier A, Antoine-Jonville S, Renoux C, Hardy-Dessources M-D, Stauffer E, Joly P, Bertrand Y, Connes P (2019) Blood rheology: key parameters, impact on blood flow, role in sickle cell disease and effects of exercise. Front Physiol. https://doi.org/10.3389/fphys.2019.01329

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nelson DA, Deuster PA, O’Connor FG, Kurina LM (2018) Sickle cell trait and heat injury among US Army soldiers. Am J Epidemiol 187(3):523–528. https://doi.org/10.1093/aje/kwx285

    Article  PubMed  Google Scholar 

  23. O’Connor FG, Bergeron MF, Cantrell J, Connes P, Harmon KG, Ivy E, Kark J, Klossner D, Lisman P, Meyers BK, O’Brien K, Ohene-Frempong K, Thompson AA, Whitehead J, Deuster PA (2012) ACSM and CHAMP summit on sickle cell trait: mitigating risks for warfighters and athletes. Med Sci Sports Exerc 44(11):2045–2056. https://doi.org/10.1249/MSS.0b013e31826851c2

    Article  PubMed  Google Scholar 

  24. Pedersen ES, Tengesdal S, Radtke M, Langlo KAR (2019) Major increase in creatine kinase after intensive exercise. Tidsskrift for Den Norske Laegeforening: Tidsskrift for Praktisk Medicin, Ny Raekke. https://doi.org/10.4045/tidsskr.18.0120

  25. Quattrone RD, Eichner ER, Beutler A, Adams WB, O’Connor FG (2015) Exercise collapse associated with sickle cell trait (ECAST): case report and literature review. Curr Sports Med Rep 14(2):110–116. https://doi.org/10.1249/JSR.0000000000000137

    Article  PubMed  Google Scholar 

  26. Reminy K, Hue O, Antoine-Jonville S (2020) Effect of warm environment on the skin blood flow response to food intake. Int J Hyperth 37(1):836–842. https://doi.org/10.1080/02656736.2020.1788174

    CAS  Article  Google Scholar 

  27. Romero SA, Gagnon D, Adams AN, Cramer MN, Kouda K, Crandall CG (2017) Acute limb heating improves macro- and microvascular dilator function in the leg of aged humans. Am J Physiol Heart Circ Physiol 312(1):H89–H97. https://doi.org/10.1152/ajpheart.00519.2016

    Article  PubMed  Google Scholar 

  28. Roustit M, Blaise S, Millet C, Cracowski JL (2010) Reproducibility and methodological issues of skin post-occlusive and thermal hyperemia assessed by single-point laser Doppler flowmetry. Microvasc Res 79(2):102–108. https://doi.org/10.1016/j.mvr.2010.01.001

    CAS  Article  PubMed  Google Scholar 

  29. Sara F, Hardy-Dessources M-D, Marlin L, Connes P, Hue O (2006) Lactate distribution in the blood compartments of sickle cell trait carriers during incremental exercise and recovery. Int J Sports Med 27(6):436–443. https://doi.org/10.1055/s-2005-865844

    CAS  Article  PubMed  Google Scholar 

  30. Saxena P, Chavarria C, Thurlow J (2016) Rhabdomyolysis in a Sickle Cell Trait Positive Active Duty Male Soldier. U.S. Army Med Dep J 20–23.

  31. Singer DE, Byrne C, Chen L, Shao S, Goldsmith J, Niebuhr DW (2018) Risk of Exertional Heat Illnesses Associated with Sickle Cell Trait in U.S. Military. Military Medicine, 183(7‑8), e310–e317. https://doi.org/10.1093/milmed/usx085

  32. Skinner S, Connes P, Sigaudo-Roussel D, Lo M, Liu KL, Nader E, Josset-Lamaugarny A, Charrin E, Martin C, Romanet-Faes C, Diaw M, Pialoux V, Fromy B (2019) Altered blood rheology and impaired pressure-induced cutaneous vasodilation in a mouse model of combined type 2 diabetes and sickle cell trait. Microvasc Res 122:111–116. https://doi.org/10.1016/j.mvr.2018.11.014

    Article  PubMed  Google Scholar 

  33. Skinner S, Liu KL, Lo M, Josset-Lamaugarny A, Charrin E, Martin C, Pialoux V, Fromy B, Connes P, Sigaudo-Roussel D (2020) Alterations in vascular reactivity in a transgenic mouse model of sickle cell trait. Br J Haematol 189(4):e154–e157. https://doi.org/10.1111/bjh.16577

    Article  PubMed  Google Scholar 

  34. Tripette J, Alexy T, Hardy-Dessources M-D, Mougenel D, Beltan E, Chalabi T, Chout R, Etienne-Julan M, Hue O, Meiselman HJ, Connes P (2009) Red blood cell aggregation, aggregate strength and oxygen transport potential of blood are abnormal in both homozygous sickle cell anemia and sickle-hemoglobin C disease. Haematologica 94(8):1060–1065. https://doi.org/10.3324/haematol.2008.005371

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Tripette J, Connes P, Beltan E, Chalabi T, Marlin L, Chout R, Baskurt OK, Hue O, Hardy-Dessources M-D (2010a) Red blood cell deformability and aggregation, cell adhesion molecules, oxidative stress and nitric oxide markers after a short term, submaximal, exercise in sickle cell trait carriers. Clin Hemorheol Microcirc 45(1):39–52. https://doi.org/10.3233/CH-2010-1325

    CAS  Article  PubMed  Google Scholar 

  36. Tripette J, Loko G, Samb A, Gogh BD, Sewade E, Seck D, Hue O, Romana M, Diop S, Diaw M, Brudey K, Bogui P, Cissé F, Hardy-Dessources M-D, Connes P (2010b) Effects of hydration and dehydration on blood rheology in sickle cell trait carriers during exercise. Am J Physiol-Heart Circ Physiol 299(3):H908–H914. https://doi.org/10.1152/ajpheart.00298.2010

    CAS  Article  PubMed  Google Scholar 

  37. Vincent L, Féasson L, Oyono-Enguéllé S, Banimbek V, Denis C, Guarneri C, Aufradet E, Monchanin G, Martin C, Gozal D, Dohbobga M, Wouassi D, Garet M, Thiriet P, Messonnier L (2010) Remodeling of skeletal muscle microvasculature in sickle cell trait and alpha-thalassemia. Am J Physiol Heart Circ Physiol 298(2):375–384. https://doi.org/10.1152/ajpheart.00812.2009

    CAS  Article  Google Scholar 

  38. Walløe L (2015) Arterio-venous anastomoses in the human skin and their role in temperature control. Temp Multidiscip Biomed J 3(1):92–103. https://doi.org/10.1080/23328940.2015.1088502

    Article  Google Scholar 

  39. Wang Y, Branicky R, Noë A, Hekimi S (2018) Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217(6):1915–1928. https://doi.org/10.1083/jcb.201708007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Witko-Sarsat V, Friedlander M, Capeillère-Blandin C et al (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49:1304–13. https://doi.org/10.1038/ki.1996.186

  41. Zimmerman JL, Shen MC (2013) Rhabdomyolysis. Chest 144(3):1058–1065. https://doi.org/10.1378/chest.12-2016

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the participants, nurses (coordinated by Franceline Falla), and physicians (Patrick Chérubin, Nicolas Benoit) for their great involvement.

Funding

Funding for this work was provided by European Regional Development Fund & Région Guadeloupe 2015-FED-213.

Author information

Affiliations

Authors

Contributions

KR: formal analysis, investigation, methodology, writing– original draft, writing review & editing. ETNS: data curation, formal analysis, investigation, review & editing. MR: investigation, resources, writing-review & editing. PC: conceptualization, formal analysis, resources, writing – review & editing. SR: investigation, methodology. SH: investigation, methodology. OH: original draft, review & editing. MHD: investigation, methodology, writing – review & editing. SAJ: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, resources, supervision, writing – original draft, writing – review & editing.

Corresponding author

Correspondence to S. Antoine-Jonville.

Ethics declarations

Conflict interest

The author declares no financial or other conflict of interest that might bias this article.

Ethical approval

The participants were informed of the procedures and purposes of the study, which were in accordance with the institutional guidelines and the Helsinki Declaration of 2013 and was approved by the National Ethics Committee (CPP 17.10.10). This protocol described in this article is part of a larger project registered in EudraCT (TDEX: 2017-A02226-47) and Clinical Trials (NCT04028791).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Narihiko kondo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reminy, K., Ngo Sock, E.T., Romana, M. et al. Strenuous exercise in warm environment is associated with improved microvascular function in sickle cell trait. Eur J Appl Physiol (2021). https://doi.org/10.1007/s00421-021-04821-2

Download citation

Keywords

  • Sickle cell trait
  • Cutaneous thermal hyperemia
  • Physical exercise