Skip to main content

A biomarker perspective on the acute effect of exercise with and without impact on joint tissue turnover: an exploratory randomized cross-over study

Abstract

Purpose

To investigate acute changes in biochemical markers of bone and cartilage turnover in response to moderate intensity exercise with and without joint impact in healthy human subjects.

Methods

A randomized, cross-over, exploratory, clinical study was conducted. Twenty healthy subjects with no history of joint trauma completed 30 min interventions of standardized moderate intensity cycling and running as well as a resting intervention 1 week apart. Blood samples were taken immediately before, four times after exercise and again the next day. Urine was sampled, before, after and the next day. On the day of rest, samples were taken at timepoints similar to the days of exercise. Markers of type I (CTX-I), II (C2M, CTX-II) and VI (C6M) collagen degradation, cartilage oligomeric matrix protein (COMP) and procollagen C-2 (PRO-C2) was measured. Trial registration number: NCT04542655, 02 September 2020, retrospectively registered.

Results

CTX-I was different from cycling (4.2%, 95%CI: 0.4–8.0%, p = 0.03) and resting (6.8%, 95%CI: 2.9–10.7%, p = 0.001) after running and the mean change in COMP was different from cycling (10.3%, 95%CI: 1.1–19.5%, p = 0.03), but not from resting (8.6%, 95%CI: − 0.7–17.8%, p = 0.07) after running. Overall, changes in other biomarkers were not different between interventions.

Conclusion

In this exploratory study, running, but not cycling, at a moderate intensity and duration induced acute changes in biomarkers of bone and cartilage extra-cellular matrix turnover.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

BMI:

Body mass index

CV:

Coefficient of variation

COMP:

Cartilage oligomeric matrix protein

CTX-I:

C-terminal telopeptide of type I collagen

CTX-II:

C-terminal telopeptide of type II collagen

C2M:

MMP-generated fragment of type II collagen

C6M:

MMP-generated fragment of type VI collagen

ELISA:

Enzyme-linked immunosorbent assays

ICC:

Intraclass correlation

KOOS:

Knee injury and osteoarthritis outcome score

LLOQ:

Lower limit og quantification

MMP:

Matrix metalloproteinase

MRI:

Magnetic resonance imaging

OA:

Osteoarthritis

PRO-C2:

Procollagen type II

R:

Range

SEM:

Standard error of the mean

ULOQ:

Upper limit of quantification

References

  1. Alentorn-Geli E, Samuelsson K, Musahl V, Green CL, Bhandari M, Karlsson J (2017) The association of recreational and competitive running with Hip and knee osteoarthritis: a systematic review and meta-analysis. J Orthop Sports Phys Ther. https://doi.org/10.2519/jospt.2017.7137

    Article  PubMed  Google Scholar 

  2. Bannuru RR, Osani MC, Vaysbrot EE, Arden NK, Bennell K, Bierma-Zeinstra SMA, Kraus VB, Lohmander LS, Abbott JH, Bhandari M et al (2019) OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthr Cartil. https://doi.org/10.1016/j.joca.2019.06.011

    Article  Google Scholar 

  3. Bay-Jensen AC, Liu Q, Byrjalsen I, Li Y, Wang J, Pedersen C, Leeming DJ, Dam EB, Zheng Q, Qvist P et al (2011) Enzyme-linked immunosorbent assay (ELISAs) for metalloproteinase derived type II collagen neoepitope, CIIM–increased serum CIIM in subjects with severe radiographic osteoarthritis. ClinBiochem. 44(1873–2933 (Electronic)):423–429

    CAS  Google Scholar 

  4. Behzadi C, Welsch GH, Laqmani A, Henes FO, Kaul MG, Schoen G, Adam G, Regier M (2016) The immediate effect of long-distance running on T2 and T2∗ relaxation times of articular cartilage of the knee in young healthy adults at 3.0 T MR imaging. Br J Radiol. https://doi.org/10.1259/bjr.20151075

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bihlet AR, Bjerre-Bastos JJ, Byrjalsen I, Andersen JR, Bay-Jensen A-C, Pelletier J-P, Martel-Pelletier J, Karsdal MA (2019) Elevated serum biomarkers of inflammatory turnover of collagen types III and VI predict rapid cartilage loss. Osteoarthr Cartil. https://doi.org/10.1016/j.joca.2019.02.155

    Article  Google Scholar 

  6. Bjerre-Bastos JJ, Nielsen HB, Andersen JR, He Y, Karsdal M, Bay-Jensen A-C, Boesen M, Mackey AL, Bihlet AR (2020) Evaluation of serum ARGS neoepitope as an osteoarthritis biomarker using a standardized model for exercise-induced cartilage extra cellular matrix turnover. Osteoarthr Cartil Open. https://doi.org/10.1016/j.ocarto.2020.100060

    Article  Google Scholar 

  7. Bjerre-Bastos JJ, Nielsen HB, Andersen JR, Karsdal M, Bay-Jensen AC, Boesen M, Mackey AL, Byrjalsen I, Bihlet AR (2021) Does moderate intensity impact exercise and non-impact exercise induce acute changes in collagen biochemical markers related to osteoarthritis? – An exploratory randomized cross-over trial. Osteoarthr Cartil. https://doi.org/10.1016/j.joca.2021.02.569

    Article  Google Scholar 

  8. Buckwalter JA (1998) Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther. https://doi.org/10.2519/jospt.1998.28.4.192

    Article  PubMed  Google Scholar 

  9. Cattano NM, Driban JB, Barbe MF, Tierney RT, Amin M, Sitler MR (2017a) Biochemical response to a moderate running bout in participants with or without a history of acute knee injury. J Athl Train. https://doi.org/10.4085/1062-6050-51.5.09

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cattano NM, Driban JB, Cameron KL, Sitler MR (2017b) Impact of physical activity and mechanical loading on biomarkers typically used in osteoarthritis assessment: current concepts and knowledge gaps. Ther Adv Musculoskelet Dis 9(1):11–21. https://doi.org/10.1177/1759720X16670613

    Article  PubMed  Google Scholar 

  11. Cescon M, Gattazzo F, Chen P, Bonaldo P (2015) Collagen VI at a glance. J Cell Sci. https://doi.org/10.1242/jcs.169748

    Article  PubMed  Google Scholar 

  12. Cymet TC, Sinkov V (2006) Does long-distance running cause osteoarthritis? J Am Osteopath Assoc 106(6):342–345

    PubMed  Google Scholar 

  13. D’Lima DD, Fregly BJ, Patil S, Steklov N, Colwell CW. 2012. Knee joint forces: prediction, measurement, and significance. In: Proceedings of the Institution of Mechanical Engineers, Part H: J Eng Med.

  14. Denning WM, Woodland S, Winward JG, Leavitt MG, Parcell AC, Hopkins JT, Francom D, Seeley MK (2014) The influence of experimental anterior knee pain during running on electromyography and articular cartilage metabolism. Osteoarthr Cartil. https://doi.org/10.1016/j.joca.2014.05.006

    Article  Google Scholar 

  15. Erhart-Hledik JC, Favre J, Asay JL, Smith RL, Giori NJ, Mündermann A, Andriacchi TP (2012) A relationship between mechanically-induced changes in serum cartilage oligomeric matrix protein (COMP) and changes in cartilage thickness after 5 years. Osteoarthr Cartil 20(11):1309–1315. https://doi.org/10.1016/j.joca.2012.07.018

    CAS  Article  Google Scholar 

  16. Evans W, Nevill A, McLaren SJ, Ditroilo M (2020) The effect of intermittent running on biomarkers of bone turnover. Eur J Sport Sci. https://doi.org/10.1080/17461391.2019.1646811

    Article  PubMed  Google Scholar 

  17. Eyre DR, Weis MA, Wu JJ (2006) Articular cartilage collagen: an irreplaceable framework? Eur Cells Mater. https://doi.org/10.22203/eCM.v012a07

    Article  Google Scholar 

  18. Firner S, Willwacher S, de Marées M, Bleuel J, Zaucke F, Brüggemann GP, Niehoff A (2018) Effect of increased mechanical knee joint loading during running on the serum concentration of cartilage oligomeric matrix protein (COMP). J Orthop Res. https://doi.org/10.1002/jor.23859

    Article  PubMed  Google Scholar 

  19. Fries JF, Singh G, Morfeld D, Hubert HB, Lane NE, Brown BW (1994) Running and the development of disability with age. Ann Intern Med. https://doi.org/10.7326/0003-4819-122-6-199503150-00017

    Article  PubMed  Google Scholar 

  20. Guillemant J, Accarie C, Peres G, Guillemant S (2004) Acute effects of an oral calcium load on markers of bone metabolism during endurance cycling exercise in male athletes. Calcif Tissue Int. https://doi.org/10.1007/s00223-003-0070-0

    Article  PubMed  Google Scholar 

  21. Heinemeier KM, Schjerling P, Heinemeier J, Møller MB, Krogsgaard MR, Grum-Schwensen T, Petersen MM, Kjaer M (2016) Radiocarbon dating reveals minimal collagen turnover in both healthy and osteoarthritic human cartilage. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aad8335

    Article  PubMed  Google Scholar 

  22. Herger S, Vach W, Liphardt AM, Egloff C, Nüesch C, Mündermann A (2018) Dose-response relationship between ambulatory load magnitude and load-induced changes in COMP in young healthy adults. Osteoarthr Cartil. https://doi.org/10.1016/j.joca.2018.09.002

    Article  Google Scholar 

  23. Hunter DJ, Bierma-Zeinstra S (2019) Osteoarthritis. Lancet. https://doi.org/10.1016/S0140-6736(19)30417-9

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hyldahl RD, Evans A, Kwon S, Ridge ST, Robinson E, Hopkins JT, Seeley MK (2016) Running decreases knee intra-articular cytokine and cartilage oligomeric matrix concentrations: a pilot study. Eur J Appl Physiol. https://doi.org/10.1007/s00421-016-3474-z

    Article  PubMed  Google Scholar 

  25. Jetsmark B-B, Karsdal MA, Boesen M, Bliddal H, Bay-Jensen A-C, Andersen JR, Bihlet AR (2020) The acute and long-term impact of physical activity on biochemical markers and MRI measures in osteoarthritis - perspectives for clinical osteoarthritis research. Transl Sport Med. https://doi.org/10.1002/tsm2.155

    Article  Google Scholar 

  26. Karsdal MA, Byrjalsen I, Riis BJ, Christiansen C (2008) Investigation of the diurnal variation in bone resorption for optimal drug delivery and efficacy in osteoporosis with oral calcitonin. BMC Clin Pharmacol. https://doi.org/10.1186/1472-6904-8-12

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim HJ, Lee YH, Kim CK (2009) Changes in serum cartilage oligomeric matrix protein (COMP), plasma CPK and plasma hs-CRP in relation to running distance in a marathon (42.195 km) and an ultra-marathon (200 km) race. Eur J Appl Physiol 105(5):765–770. https://doi.org/10.1007/s00421-008-0961-x

    CAS  Article  PubMed  Google Scholar 

  28. Kjaer M, Jørgensen NR, Heinemeier K, Magnusson SP (2015) Exercise and regulation of bone and collagen tissue biology. Prog Mole Biol Trans Sci 135:259–291

    Article  Google Scholar 

  29. Kujala UM, Kettunen J, Paananen H, Aalto T, Battié MC, Impivaara O, Videman T, Sarna S (1995) Knee osteoarthritis in former runners, soccer players, weight lifters, and shooters. Arthritis Rheum. https://doi.org/10.1002/art.1780380413

    Article  PubMed  Google Scholar 

  30. Luo Y, He Y, Reker D, Gudmann NS, Henriksen K, Simonsen O, Ladel C, Michaelis M, Mobasheri A, Karsdal M et al (2018) A novel high sensitivity type II collagen blood-based biomarker, PRO-C2, for assessment of cartilage formation. Int J Mol Sci. https://doi.org/10.3390/ijms19113485

    Article  PubMed  PubMed Central  Google Scholar 

  31. Manicone AM, McGuire JK (2008) Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2007.07.003

    Article  PubMed  Google Scholar 

  32. McAlindon TE, Wilson PWF, Aliabadi P, Weissman B, Felson DT (1999) Level of physical activity and the risk of radiographic and symptomatic knee osteoarthritis in the elderly: the Framingham study. Am J Med. https://doi.org/10.1016/S0002-9343(98)00413-6

    Article  PubMed  Google Scholar 

  33. Neidhart M, Müller-Ladner U, Frey W, Bosserhoff AK, Colombani PC, Frey-Rindova P, Hummel KM, Gay RE, Häuselmann HJ, Gay S (2000) Increased serum levels of non-collagenous matrix proteins (cartilage oligomeric matrix protein and melanoma inhibitory activity) in marathon runners. Osteoarthr Cartil 8(3):222–229. https://doi.org/10.1053/joca.1999.0293

    CAS  Article  Google Scholar 

  34. Pullig O, Weseloh G, Swoboda B (1999) Expression of type VI collagen in normal and osteoarthritic human cartilage. Osteoarthr Cartil. https://doi.org/10.1053/joca.1998.0208

    Article  Google Scholar 

  35. Qvist P, Christgau S, Pedersen BJ, Schlemmer A, Christiansen C (2002) Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone 31(8756–3282 (Print)):57–61

    CAS  Article  Google Scholar 

  36. Reker D, Siebuhr AS, Thudium CS, Gantzel T, Ladel C, Michaelis M, Aspberg A, Berchtold MW, Karsdal MA, Gigout A et al (2020) Sprifermin (rhFGF18) versus vehicle induces a biphasic process of extracellular matrix remodeling in human knee OA articular cartilage ex vivo. Sci Rep. https://doi.org/10.1038/s41598-020-63216-z

    Article  PubMed  PubMed Central  Google Scholar 

  37. Roberts HM, Law RJ, Thom JM (2019) The time course and mechanisms of change in biomarkers of joint metabolism in response to acute exercise and chronic training in physiologic and pathological conditions. Eur J Appl Physiol. https://doi.org/10.1007/s00421-019-04232-4

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rogers LQ, Macera CA, Hootman JM, Ainsworth B, Blair SN (2002) The association between joint stress from physical activity and self-reported osteoarthritis: An analysis of the Cooper clinic data. Osteoarthr Cartil. https://doi.org/10.1053/joca.2002.0802

    Article  Google Scholar 

  39. Roos EM, Lohmander LS (2003) The knee injury and osteoarthritis outcome score (KOOS): from joint injury to osteoarthritis. Health Qual Life Outcomes. https://doi.org/10.1186/1477-7525-1-64

    Article  PubMed  PubMed Central  Google Scholar 

  40. Roos H, Dahlberg L, Hoerrner LA, Lark MW, Thonar EJMA, Shinmei M, Lindqvist U, Stefan LL (1995) Markers of cartilage matrix metabolism in human joint fluid and serum: the effect of exercise. Osteoarthr Cartil. https://doi.org/10.1016/S1063-4584(05)80033-0

    Article  Google Scholar 

  41. Rosenquist C, Fledelius C, Christgau S, Pedersen BJ, Bonde M, Qvist P, Christiansen C (1998) Serum CrossLaps One Step ELISA. First application of monoclonal antibodies for measurement in serum of bone-related degradation products from C-terminal telopeptides of type I collagen. Clin Chem 44(0009–9147):2281–2289

    CAS  Article  Google Scholar 

  42. Sand JM, Larsen L, Hogaboam C, Martinez F, Han M, Rossel LM, Nawrocki A, Zheng Q, Karsdal MA, Leeming DJ (2013) MMP mediated degradation of type IV collagen alpha 1 and alpha 3 chains reflects basement membrane remodeling in experimental and clinical fibrosis–validation of two novel biomarker assays. PLoS ONE 8(1932–6203):e84934

    Article  Google Scholar 

  43. Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health. https://doi.org/10.1177/1941738109350438

    Article  PubMed  PubMed Central  Google Scholar 

  44. Urquhart DM, Tobing JFL, Hanna FS, Berry P, Wluka AE, Ding C, Cicuttini FM (2011) What is the effect of physical activity on the knee joint? a systematic review. Med Sci Sports Exerc. https://doi.org/10.1249/MSS.0b013e3181ef5bf8

    Article  PubMed  Google Scholar 

  45. Våben C, Heinemeier KM, Schjerling P, Olsen J, Petersen MM, Kjaer M, Krogsgaard MR (2020) No detectable remodelling in adult human menisci: an analysis based on the C14 bomb pulse. Br J Sports Med. https://doi.org/10.1136/bjsports-2019-101360

    Article  PubMed  Google Scholar 

  46. Valderrabano V, Steiger C (2011) Treatment and prevention of osteoarthritis through exercise and sports. J Aging Res. https://doi.org/10.4061/2011/374653

    Article  Google Scholar 

  47. Vincent TL, Wann AKT (2019) Mechanoadaptation: articular cartilage through thick and thin. J Physiol. https://doi.org/10.1113/JP275451

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Heidi Rønberg for lab assistance, Melanie Kurell and Sarah á Rogvi for clinical assistance and Dr. Kamilla Mundbjerg for technical support.

Funding

This study was funded by Nordic Bioscience Clinical Development and the Danish Research Fund.

Author information

Affiliations

Authors

Contributions

JJB, ARB, JRA and HBN designed the protocol. JJB and MB acquired the clinical data. JJB, ARB, and IB conducted the data analysis. JJB, ARB, MK, CT and ALM interpreted the data. JJB drafted the manuscript. Critical revision and approval of the final manuscript was done by all of the authors.

Corresponding author

Correspondence to Jonathan J. Bjerre-Bastos.

Ethics declarations

Conflicts of interest

JJB received funding from Nordic Bioscience Clinical Development and the Danish Research Fund. IB and CT are full-time employees of Nordic Bioscience. JRA, MK and ARB are full-time employees and shareholders of Nordic Bioscience. MB and ALM have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Kirsty Elliott-Sale.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bjerre-Bastos, J.J., Nielsen, H.B., Andersen, J.R. et al. A biomarker perspective on the acute effect of exercise with and without impact on joint tissue turnover: an exploratory randomized cross-over study. Eur J Appl Physiol 121, 2799–2809 (2021). https://doi.org/10.1007/s00421-021-04751-z

Download citation

Keywords

  • Biomarker
  • Exercise
  • Joint
  • Bone
  • Collagen