Skip to main content
Log in

Fifteen days of moderate normobaric hypoxia does not affect mitochondrial function, and related genes and proteins, in healthy men

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate within the one study potential molecular and cellular changes associated with mitochondrial biogenesis following 15 days of exposure to moderate hypoxia.

Methods

Eight males underwent a muscle biopsy before and after 15 days of hypoxia exposure (FiO2 = 0.140–0.154; ~ 2500–3200 m) in a hypoxic hotel. Mitochondrial respiration, citrate synthase (CS) activity, and the content of genes and proteins associated with mitochondrial biogenesis were investigated.

Results

Our main findings were the absence of significant changes in the mean values of CS activity, mitochondrial respiration in permeabilised fibers, or the content of genes and proteins associated with mitochondrial biogenesis, after 15 days of moderate normobaric hypoxia.

Conclusion

Our data provide evidence that 15 days of moderate normobaric hypoxia have negligible influence on skeletal muscle mitochondrial content and function, or genes and proteins content associated with mitochondrial biogenesis, in young recreationally active males. However, the increase in mitochondrial protease LON content after hypoxia exposure suggests the possibility of adaptations to optimise respiratory chain function under conditions of reduced O2 availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AMS:

Acute mountain sickness

ATP:

Adenosine triphosphate

BIOPS:

Biopsy preservation solution

BMI:

Body Mass Index

CI:

Confidence interval

CI to CV:

Complex I–V

COX:

Cytochrome c oxidase

CS:

Citrate synthase

E:

Electron transport system capacity

ES:

Effect size

ETC:

Electron transport chain

FCCP:

Titrating carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone

FiO2 :

Fractional inspired oxygen

Hb:

Hemoglobin

Hct:

Hematocrit

HIF-1:

Hypoxia-inducible factor 1

L:

Leak respiration

LONP:

Lon Protease

MIRO5:

Mitochondrial respiration medium

P:

Oxidative phosphorylation capacity

p53:

Tumor suppressor protein

PGC-1α:

Peroxisome proliferator-activated receptor γ coactivator 1α

Post:

After 15 days of hypoxic exposure

Pre:

Before 15 days of hypoxic exposure

ROX:

Residual oxygen consumption

SaO2 :

Arterial blood saturation

SD:

Standard Deviation

SEM:

Standard Error

SL:

Sea level

TEM:

Transmission electron microscopy

V̇O2peak :

Peak oxygen uptake

Wpeak :

Peak power output

References

  • Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, Baek KH, Rosenzweig A, Spiegelman BM (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451:1008–1012

    CAS  PubMed  Google Scholar 

  • Beidleman BA, Staab JE, Muza SR, Sawka MN (2017) Quantitative model of hematologic and plasma volume responses after ascent and acclimation to moderate to high altitude. Am J Physiol Regul Integr Comp Physiol 312:R265–R272

    PubMed  Google Scholar 

  • Bergstrom J (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35:609–616

    CAS  PubMed  Google Scholar 

  • Bota DA, Davis KJ (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4:674–680

    CAS  PubMed  Google Scholar 

  • Brooks JT, Elvidge GP, Glenny L, Gleadle JM, Liu C, Ragoussis J, Smith TG, Talbot NP, Winchester L, Maxwell PH, Robbins PA (2009) Variations within oxygen-regulated gene expression in humans. J Appl Physiol 106:212–220

    CAS  PubMed  Google Scholar 

  • Butterfield GE, Gates J, Fleming S, Brooks GA, Sutton JR, Reeves JT (1992) Increased energy intake minimizes weight loss in men at high altitude. J Appl Physiol 72:1741–1748

    CAS  PubMed  Google Scholar 

  • Chapman RF, Stray-Gundersen J, Levine BD (1998) Individual variation in response to altitude training. J Appl Physiol 85:1448–1456

    CAS  PubMed  Google Scholar 

  • Chicco AJ, Le CH, Gnaiger E, Dreyer HC, Muyskens JB, D’Alessandro A et al (2018) Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: lessons from AltitudeOmics. J Biol Chem 293:6659–6671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dzhalilova D, Makarova O (2020) Differences in tolerance to hypoxia: physiological, biochemical, and molecular-biological characteristic. Biomedicines 8:428. https://doi.org/10.3390/biomedicines8100428

    Article  CAS  PubMed Central  Google Scholar 

  • Eaton SL, Roche SL, Llavero Hurtado M, Oldknow KJ, Farquharson C, Gillingwater TH, Wishart TM (2013) Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting. PLoS ONE 8:e72457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faiss R, Pialoux V, Sartori C, Faes C, Deriaz O, Millet GP (2013) Ventilation, oxidative stress, and nitric oxide in hypobaic versus normobaric hypoxia. Med Sci Sports Exerc 45:253–260

    CAS  PubMed  Google Scholar 

  • Ferrus L, Commenges D, Gire J, Varene P (1984) Respiratory water loss as a function of ventilatory or environmental factors. Respir Physiol 56:11–20

    CAS  PubMed  Google Scholar 

  • Fukuda R, Zhang H, Kim J, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimise efficiency of respiration in hypoxic cells. Cell 129:111–122

    CAS  PubMed  Google Scholar 

  • Fusch C, Gfrorer W, Koch C, Thomas A, Grunert A, Moeller H (1996) Water turnover and body composition during long-term exposure to high altitude (4900–7600 m). J Appl Physiol 80:1118–1125

    CAS  PubMed  Google Scholar 

  • Green H, Sutton J, Cymerman A, Young P, Houston C (1989) Operation Everest II: adaptations in human skeletal muscle. J Appl Physiol 66:2454–2461

    CAS  PubMed  Google Scholar 

  • Green HJ, Roy B, Grant S, Hughson R, Burnett M, Otto C, Pipe A, McKenzie D, Johnson M (2000) Increases in submaximal cycling efficiency mediated by altitude acclimatization. J Appl Physiol 89:1189–1197

    CAS  PubMed  Google Scholar 

  • Höchli D, Schneiter T, Ferretti G, Howald H, Claassen H, Moia C, Atchou G, Belleri M, Veicsteinas A, Hoppeler H (1995) Loss of muscle oxidative capacity after an extreme endurance run: the Paris-Dakar foot-race. Int J Sports Med 16:343–346

    PubMed  Google Scholar 

  • Hoppeler H, Kleinert E, Schlegel C, Claassen H, Howald H, Kayar SR, Cerretelli P (1990) II. Morphological adaptations of human skeletal muscle to chronic hypoxia. Int J Sports Med 11:S3–S9

    PubMed  Google Scholar 

  • Howald H, Pette D, Simoneau JA, Uber A, Hoppeler H, Cerretelli P (1990) III. Effects of chronic hypoxia on muscle enzyme activities. Int J Sports Med 11:S10–S14

    PubMed  Google Scholar 

  • Jacobs RA, Siebenmann C, Hug M, Toigo M, Meinild AK, Lundby C (2012) Twenty-eight days at 3454-m altitude diminishes respiratory capacity but enhances efficiency in human skeletal muscle mitochondria. FASEB J 26:5192–5200

    CAS  PubMed  Google Scholar 

  • Jacobs RA, Boushel R, Wright-Paradis C, Calbet JA, Robach P, Gnaiger E, Lundby C (2013) Mitochondrial function in human skeletal muscle following high-altitude exposure. Exp Physiol 98:245–255

    CAS  PubMed  Google Scholar 

  • Jacobs RA, Lundby AM, Fenk S, Gehrig S, Siebenmann C, Fluck D, Kirk N, Hilty MP, Lundby C (2016) Twenty-eight days of exposure to 3454 m increases mitochondrial volume density in human skeletal muscle. J Physiol 594:1151–1166

    CAS  PubMed  Google Scholar 

  • Koumenis C, Alarcon R, Hammond E, Sutphin P, Hoffman W, Murphy M, Derr J, Taya Y, Lowe SW, Kastan M (2001) Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol 21:1297–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kruse J-P, Gu W (2009) Modes of p53 regulation. Cell 137:609–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, Schroder HD, Boushel R, Helge JW, Dela F, Hey-Mogensen M (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590:3349–3360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leverve X (1998) Metabolic and nutritional consequences of chronic hypoxia. Clin Nutr 17:241–251

    CAS  PubMed  Google Scholar 

  • Levett DZ, Radford EJ, Menassa DA, Graber EF, Morash AJ, Hoppeler H, Clarke K, Martin DS, Ferguson-Smith AC, Montgomery HE, Grocott MP, Murray AJ, Caudwell Xtreme Everest Research G (2012) Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest. FASEB J 26:1431–1441

    CAS  PubMed  Google Scholar 

  • Levine M, Ensom MH (2001) Post hoc power analysis: an idea whose time has passed? Pharmacotherapy 21:405–409

    CAS  PubMed  Google Scholar 

  • Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370

    PubMed  Google Scholar 

  • Mizuno M, Savard GK, Areskog NH, Lundby C, Saltin B (2008) Skeletal muscle adaptations to prolonged exposure to extreme altitude: a role of physical activity? High Alt Med Biol 9:311–317

    CAS  PubMed  Google Scholar 

  • Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810:25–58

    CAS  PubMed  Google Scholar 

  • Pinti M, Gibellini L, Nasi M, De Biasi S, Bortolotti CA, Iannone A, Cossarizza A (2016) Emerging role of Lon protease as a master regulator of mitochondrial functions. Biochim Biophys Acta 1857:1300–1306

    CAS  PubMed  Google Scholar 

  • Pugh LGCE (1964) Blood volume and haemoglobin concentration at altitudes above 18,000 ft. (5500 m). J Physiol 170:344–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90

    CAS  PubMed  Google Scholar 

  • Saleem A, Carter HN, Iqbal S, Hood DA (2011) Role of p53 within the regulatory network controlling muscle mitochondrial biogenesis. Exerc Sport Sci Rev 39:199–205

    PubMed  Google Scholar 

  • Scheffler IE (2001) A century of mitochondrial research: achievements and perspectives. Mitochondrion 1:3–31

    CAS  PubMed  Google Scholar 

  • Schlittler M, Gatterer H, Turner R, Regli IB, Woyke S, Strapazzon G et al (2021) J Physiol 599:1083–1096

    CAS  PubMed  Google Scholar 

  • Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 207:cm8

    Google Scholar 

  • Sen N, Satija YK, Das S (2011) PGC-1α, a key modulator of p53, promotes cell survival upon metabolic stress. Mol Cell 44:621–634

    CAS  PubMed  Google Scholar 

  • Sermeus A, Michiels C (2011) Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis 2:e164. https://doi.org/10.1038/cddis.2011.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siebenmann C, Robach P, Lundby C (2017) Regulation of blood volume in lowlanders exposed to high altitude. J Appl Physiol 123:957–966

    CAS  PubMed  Google Scholar 

  • Toledo FG, Menshikova EV, Azuma K, Radikova Z, Kelley CA, Ritov VB, Kelley DE (2008) Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increase in insulin action and decreases in intramyocellular lipid content. Diabetes 57:987–994

    CAS  PubMed  Google Scholar 

  • Waypa GB, Smith KA, Schumacker PT (2016) O2 sensing, mitochondria and ROS signaling: the fog is lifting. Mol Aspects Med 47–48:76–89

    PubMed  Google Scholar 

  • Weil JV (2003) Variation in human ventilatory control-genetic influence on the hypoxic ventilatory response. Respir Physiol Neurobiol 135:239–246

    CAS  PubMed  Google Scholar 

  • Westerterp KR, Meijer EP, Rubbens M, Robach P, Richlet JP (2000) Operation Everest III: energy and water balance. Pflugers Arch- Eur J Physiol 439:483–488

    CAS  Google Scholar 

  • Woods AL, Sharma AP, Garvican-Lewis LA, Saunders PU, Rice AJ, Thompson KG (2017) Four weeks of classical altitude training increases resting metabolic rate in highly trained middle-distance runners. IJSNEM 26:83–90

    Google Scholar 

  • Young AJ, Karl JP, Berryman CE, Montain SJ, Beidleman BA, Pasiakos SM (2019) Variability in human plasma volume responses during altitude sojourn. Physiol Rep 7:e14051

    PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Wang M-Y, Hao K, Chen X-Q, Du J-Z (2013) CRHR1 mediates p53 transcription induced by high altitude hypoxia through ERK 1/2 signaling in rat hepatic cells. Peptides 44:8–14

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge and thank all those who supervised participants while they stayed in the hypoxic hotel: Elise Brent, James Broatch, Remi Delfour-Peyrethon, Nir Eynon, Jackson Fyfe, Cian McGinley, and Sarah Voisin. We would also like to thank all the participants for volunteering for such a challenging project.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

AF, FB, DJB: study design; AF, FB, AEL, DJB: sample acquisition; XY, JK, CG, RSFO, CPH: biochemical and data analyses; AF, XY, JK, CG, RSFO, CPH, AEL, DJB: data interpretation; AF, DJB: first draft of the manuscript; AF, CG, RSFO, CPH, AEL: editing of manuscript; AF, XY, JK, CG, RSFO, CPH, FB, AEL, DJB: manuscript approval.

Corresponding author

Correspondence to David J. Bishop.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This research study was approved by the Victoria University Human Research Ethics Committee (HRET 10/220). All procedures conformed to the standards set by the 1964 Declaration of Helsinki and its later amendments.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by Guido Ferretti

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferri, A., Yan, X., Kuang, J. et al. Fifteen days of moderate normobaric hypoxia does not affect mitochondrial function, and related genes and proteins, in healthy men. Eur J Appl Physiol 121, 2323–2336 (2021). https://doi.org/10.1007/s00421-021-04706-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-021-04706-4

Keywords

Navigation