Skip to main content

Regulation of satellite cells by exercise in hypoxic conditions: a narrative review

Abstract

Purpose

To investigate in vivo the adaptations of satellite cell induced by exercise performed in acute or chronic hypoxic conditions and their contribution to muscle remodeling and hypertrophy.

Methods

Search terms related to exercise, hypoxia and satellite cells were entered on Embase, PubMed and Scopus. Studies were selected for their relevance in terms of regulation of satellite cells by in vivo exercise and muscle contraction in hypoxic conditions.

Results

Satellite cell activation and proliferation seem to be enabled after acute hypoxic exercise via regulations induced by myogenic regulatory factors. Several studies reported also a role of the inflammatory pathway nuclear factor-kappa B and angiogenic factors such as vascular endothelial growth factor, both known to upregulate myogenesis. By stimulating angiogenesis, repeated exercise performed in acute hypoxia might contribute to satellite cell activation. Contrary to such exercise conditions, chronic exposure to hypoxia downregulates myogenesis despite the maintenance of physical activity. This impaired myogenesis might be induced by excessive oxidative stress and proteolysis.

Conclusion

In vivo studies suggest that, in comparison to exercise or hypoxia alone, exercise performed in a hypoxic environment, may improve or impair muscle remodeling induced by contractile activity depending upon the duration of hypoxia. Satellite cells seem to be major actors in these dichotomous adaptations. Further research on the role of angiogenesis, types of contraction and autophagy is needed for a better understanding of their respective role in hypoxic exercise-induced modulations of satellite cell activity in human.

This is a preview of subscription content, access via your institution.

Fig. 1

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Abbreviations

CD:

Cluster of differentiation

FGF:

Fibroblast growth factor

HGF:

Hepatocyte growth factor

HIF:

Hypoxia-inducible factor

IGF:

Insulin-like growth factor

IL:

Interleukin

MHC:

Myosin heavy chain

miR:

Micro RNA

MRF:

Myogenic regulatory factors

Myf5:

Myogenic factor 5

MyoD:

Myogenic differentiation

NO:

Nitric oxide

Pax7:

Paired box 7

PCNA:

Proliferating cell nuclear antigen

PGC-1α:

Peroxisome proliferator activated receptor gamma coactivator 1 alpha

PP2CA:

Protein phosphatase 2 catalytic subunit, alpha isoform

PTPN3:

Protein tyrosine phosphatase, non-receptor type 3

ROS:

Reactive oxygen species

TNF:

Tumor necrosis factor

VEGF:

Vascular endothelial growth factor

References

  1. Beaudry M, Hidalgo M, Launay T, Bello V, Darribere T (2016) Regulation of myogenesis by environmental hypoxia. J Cell Sci 129:2887–2896. https://doi.org/10.1242/jcs.188904

    CAS  Article  PubMed  Google Scholar 

  2. Bloor CM (2005) Angiogenesis during exercise and training Angiogenesis 8:263–271. https://doi.org/10.1007/s10456-005-9013-x

    Article  PubMed  Google Scholar 

  3. Britto FA et al (2020) Acute environmental hypoxia potentiates satellite cell-dependent myogenesis in response to resistance exercise through the inflammation pathway in human. FASEB J 34:1885–1900. https://doi.org/10.1096/fj.201902244R

    CAS  Article  PubMed  Google Scholar 

  4. Chaillou T, Lanner JT (2016) Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. FASEB J 30:3929–3941. https://doi.org/10.1096/fj.201600757R

    CAS  Article  PubMed  Google Scholar 

  5. Chang NC, Rudnicki MA (2014) Satellite cells: the architects of skeletal muscle. Curr Top Dev Biol 107:161–181. https://doi.org/10.1016/B978-0-12-416022-4.00006-8

    CAS  Article  PubMed  Google Scholar 

  6. Christov C et al (2007) Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell 18:1397–1409. https://doi.org/10.1091/mbc.e06-08-0693

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. D’Hulst G (1985) Deldicque L (2017) Human skeletal muscle wasting in hypoxia: a matter of hypoxic dose? J Appl Physiol 122:406–408. https://doi.org/10.1152/japplphysiol.00264.2016

    CAS  Article  Google Scholar 

  8. Deldicque L, Francaux M (2013) Acute vs chronic hypoxia: what are the consequences for skeletal muscle mass? Cellular and Molecular Exercise Physiology. https://doi.org/10.7457/cmep.v2i1.e5

    Article  Google Scholar 

  9. Di Carlo A, De Mori R, Martelli F, Pompilio G, Capogrossi MC, Germani A (2004) Hypoxia inhibits myogenic differentiation through accelerated MyoD degradation. J Biol Chem 279:16332–16338. https://doi.org/10.1074/jbc.M313931200

    CAS  Article  PubMed  Google Scholar 

  10. Diaz-Ruiz A, Gonzalez-Freire M, Ferrucci L, Bernier M, de Cabo R (2015) SIRT1 synchs satellite cell metabolism with stem cell fate Cell Stem Cell 16:103–104 doi:https://doi.org/10.1016/j.stem.2015.01.006

  11. Doria C et al (2011) Improved VO2 uptake kinetics and shift in muscle fiber type in high-altitude trekkers. J Appl Physiol 111:1597–1605. https://doi.org/10.1152/japplphysiol.01439.2010

    CAS  Article  PubMed  Google Scholar 

  12. Douglas J, Pearson S, Ross A, McGuigan M (2017) Eccentric exercise: physiological characteristics and acute responses. Sports Med 47:663–675. https://doi.org/10.1007/s40279-016-0624-8

    Article  PubMed  Google Scholar 

  13. Favier FB, Britto FA, Freyssenet DG, Bigard XA, Benoit H (2015) HIF-1-driven skeletal muscle adaptations to chronic hypoxia: molecular insights into muscle physiology. Cell Mol Life Sci 72:4681–4696. https://doi.org/10.1007/s00018-015-2025-9

    CAS  Article  PubMed  Google Scholar 

  14. Fortini P et al (2016) The fine tuning of metabolism, autophagy and differentiation during in vitro myogenesis. Cell Death Dis 7:e2168. https://doi.org/10.1038/cddis.2016.50

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Francaux M, Deldicque L (2019) Exercise and the control of muscle mass in human. Pflugers Arch 471:397–411. https://doi.org/10.1007/s00424-018-2217-x

    CAS  Article  PubMed  Google Scholar 

  16. Gnimassou O et al (2018) Environmental hypoxia favors myoblast differentiation and fast phenotype but blunts activation of protein synthesis after resistance exercise in human skeletal muscle. FASEB J 32:5272–5284. https://doi.org/10.1096/fj.201800049RR

    CAS  Article  PubMed  Google Scholar 

  17. Hoppeler H, Kleinert E, Schlegel C, Claassen H, Howald H, Kayar SR, Cerretelli P (1990) Morphological adaptations of human skeletal muscle to chronic hypoxia. Int J Sports Med 11(Suppl 1):S3-9. https://doi.org/10.1055/s-2007-1024846

    Article  PubMed  Google Scholar 

  18. Hyldahl RD, Olson T, Welling T, Groscost L, Parcell AC (2014) Satellite cell activity is differentially affected by contraction mode in human muscle following a work-matched bout of exercise. Front Physiol 5:485. https://doi.org/10.3389/fphys.2014.00485

    Article  PubMed  PubMed Central  Google Scholar 

  19. Imaoka Y, Kawai M, Mori F, Miyata H (2015) Effect of eccentric contraction on satellite cell activation in human vastus lateralis muscle. J Physiol Sci 65:461–469. https://doi.org/10.1007/s12576-015-0385-4

    CAS  Article  PubMed  Google Scholar 

  20. Konig J, Ott C, Hugo M, Jung T, Bulteau AL, Grune T, Hohn A (2017) Mitochondrial contribution to lipofuscin formation. Redox Biol 11:673–681. https://doi.org/10.1016/j.redox.2017.01.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Liu W, Wen Y, Bi P, Lai X, Liu XS, Liu X, Kuang S (2012) Hypoxia promotes satellite cell self-renewal and enhances the efficiency of myoblast transplantation. Development 139:2857–2865. https://doi.org/10.1242/dev.079665

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Mancinelli R, Pietrangelo T, La Rovere R, Toniolo L, Fano G, Reggiani C, Fulle S (2011) Cellular and molecular responses of human skeletal muscle exposed to hypoxic environment. J Biol Regul Homeost Agents 25:635–645

    CAS  PubMed  Google Scholar 

  23. Mancinelli R, Di Filippo ES, Verratti V, Fulle S, Toniolo L, Reggiani C, Pietrangelo T (2016) The regenerative potential of female skeletal muscle upon hypobaric hypoxic exposure. Front Physiol 7:303. https://doi.org/10.3389/fphys.2016.00303

    Article  PubMed  PubMed Central  Google Scholar 

  24. Manimmanakorn A, Hamlin MJ, Ross JJ, Taylor R, Manimmanakorn N (2013) Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. J Sci Med Sport 16:337–342. https://doi.org/10.1016/j.jsams.2012.08.009

    Article  PubMed  Google Scholar 

  25. Martin-Rincon M, Morales-Alamo D, Calbet JAL (2018) Exercise-mediated modulation of autophagy in skeletal muscle. Scand J Med Sci Sports 28:772–781. https://doi.org/10.1111/sms.12945

    CAS  Article  PubMed  Google Scholar 

  26. Martinelli M, Winterhalder R, Cerretelli P, Howald H, Hoppeler H (1990) Muscle lipofuscin content and satellite cell volume is increased after high altitude exposure in humans. Experientia 46:672–676. https://doi.org/10.1007/BF01939930

    CAS  Article  PubMed  Google Scholar 

  27. Masschelein E, Van Thienen R, D'Hulst G, Hespel P, Thomis M, Deldicque L (2014) Acute environmental hypoxia induces LC3 lipidation in a genotype-dependent manner FASEB J 28:1022–1034 doi:https://doi.org/10.1096/fj.13-239863

  28. Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP (2010) Combining hypoxic methods for peak performance. Sports Med 40:1–25. https://doi.org/10.2165/11317920-000000000-00000

    Article  PubMed  Google Scholar 

  29. Mukai K, Ohmura H, Matsui A, Aida H, Takahashi T, Jones JH (2020) High-intensity training in normobaric hypoxia enhances exercise performance and aerobic capacity in Thoroughbred horses: a randomized crossover study. Physiol Rep 8:e14442. https://doi.org/10.14814/phy2.14442

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Nagahisa H, Miyata H (2018) Influence of hypoxic stimulation on angiogenesis and satellite cells in mouse skeletal muscle. PLoS ONE 13:e0207040. https://doi.org/10.1371/journal.pone.0207040

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Nagahisa H, Mukai K, Ohmura H, Takahashi T, Miyata H (2016) Effect of high-intensity training in normobaric hypoxia on thoroughbred skeletal muscle. Oxid Med Cell Longev 2016:1535367. https://doi.org/10.1155/2016/1535367

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Nishimura A, Sugita M, Kato K, Fukuda A, Sudo A, Uchida A (2010) Hypoxia increases muscle hypertrophy induced by resistance training. Int J Sports Physiol Perform 5:497–508. https://doi.org/10.1123/ijspp.5.4.497

    Article  PubMed  Google Scholar 

  33. Okabe K, Mukai K, Ohmura H, Takahashi T, Miyata H (2017) Effect of acute high-intensity exercise in normobaric hypoxia on Thoroughbred skeletal muscle. J Sports Med Phys Fitness 57:711–719. https://doi.org/10.23736/S0022-4707.16.06154-5

    CAS  Article  PubMed  Google Scholar 

  34. Parise G, Murrant CL, Cocks M, Snijders T, Baum O, Plyley MJ (2020) Capillary facilitation of skeletal muscle function in health and disease. Appl Physiol Nutr Metab 45:453–462. https://doi.org/10.1139/apnm-2019-0416

    Article  PubMed  Google Scholar 

  35. Park SS, Seo Y-K, Kwon K-S (2019) Sarcopenia targeting with autophagy mechanism by exercise. BMB Rep 52:64–69. https://doi.org/10.5483/BMBRep.2019.52.1.292

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Rhoads RP et al (2009) Satellite cell-mediated angiogenesis in vitro coincides with a functional hypoxia-inducible factor pathway. Am J Physiol Cell Physiol 296:C1321-1328. https://doi.org/10.1152/ajpcell.00391.2008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Roth SM, Martel GF, Ivey FM, Lemmer JT, Metter EJ, Hurley BF, Rogers MA (2000) Skeletal muscle satellite cell populations in healthy young and older men and women. Anatom Record 260:351–358. https://doi.org/10.1002/1097-0185(200012)260:4%3c350::Aid-ar30%3e3.0.Co;2-6

    CAS  Article  Google Scholar 

  38. Schwalm C et al (2015) Activation of autophagy in human skeletal muscle is dependent on exercise intensity and AMPK activation. FASEB J 29:3515–3526. https://doi.org/10.1096/fj.14-267187

    CAS  Article  PubMed  Google Scholar 

  39. Scott BR, Slattery KM, Sculley DV, Dascombe BJ (2014) Hypoxia and resistance exercise: a comparison of localized and systemic methods. Sports Med 44:1037–1054. https://doi.org/10.1007/s40279-014-0177-7

    Article  PubMed  Google Scholar 

  40. Sutton JR (1977) Effect of acute hypoxia on the hormonal response to exercise. J Appl Physiol Respir Environ Exerc Physiol 42:587–592. https://doi.org/10.1152/jappl.1977.42.4.587

    CAS  Article  PubMed  Google Scholar 

  41. Tang AH, Rando TA (2014) Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation. The EMBO Journal 33:2782–2797. https://doi.org/10.15252/embj.201488278

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Thomas DP, Fregin GF (1981) Cardiorespiratory and metabolic responses to treadmill exercise in the horse. J Appl Physiol Respir Environ Exerc Physiol 50:864–868. https://doi.org/10.1152/jappl.1981.50.4.864

    CAS  Article  PubMed  Google Scholar 

  43. Tierney MT et al (2014) STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med 20:1182–1186. https://doi.org/10.1038/nm.3656

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Wei X, Luo L, Chen J (2019) Roles of mTOR Signaling in Tissue Regeneration Cells 8 doi:https://doi.org/10.3390/cells8091075

  45. Wen X, Klionsky DJ (2016) Autophagy is a key factor in maintaining the regenerative capacity of muscle stem cells by promoting quiescence and preventing senescence. Autophagy 12:617–618. https://doi.org/10.1080/15548627.2016.1158373

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Yun Z, Lin Q, Giaccia AJ (2005) Adaptive myogenesis under hypoxia STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Mol Cell Biol 25:3040–3055. https://doi.org/10.1128/MCB.25.8.3040-3055.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MF is supported by the Sports Ministry of the Brussels-Wallonia Federation and the Sports Performance Assistance Centre (SPAC).

Funding

This research received no external funding.

Author information

Affiliations

Authors

Contributions

S.v.D.d.t.R. wrote the first draft, drew the figure and made the summarizing table. L.D. and M.F. corrected the draft and L.D. wrote the final version that was approved by M.F. and S.v.D.d.t.R. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Louise Deldicque.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Michael Lindinger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Doorslaer de ten Ryen, S., Francaux, M. & Deldicque, L. Regulation of satellite cells by exercise in hypoxic conditions: a narrative review. Eur J Appl Physiol 121, 1531–1542 (2021). https://doi.org/10.1007/s00421-021-04641-4

Download citation

Keywords

  • Angiogenesis
  • Autophagy
  • Hypertrophy
  • Hypoxia
  • Inflammation
  • Satellite cell
  • Skeletal muscle