Skip to main content

A below-knee compression garment reduces fatigue-induced strength loss but not knee joint position sense errors



We examined the possibility that wearing a below-knee compression garment (CG) reduces fatigue-induced strength loss and joint position sense (JPS) errors in healthy adults.


Subjects (n = 24, age = 25.5 ± 4 years) were allocated to either one of the treatment groups that performed 100 maximal isokinetic eccentric contractions at 30°−1 with the right-dominant knee extensors: (1) with (EXPCG) or (2) without CG (EXP) or to (3) a control group (CONCG: CG, no exercise). Changes in JPS errors, and maximal voluntary isometric contraction (MVIC) torque were measured immediately post-, 24 h post-, and 1 week post-intervention in each leg. All testing was done without the CG.


CG afforded no protection against JPS errors. Mixed analysis of variance (ANOVA) revealed that absolute JPS errors increased post-intervention in EXPCG and EXP not only in the right-exercised (52%, p = 0.013; 57%, p = 0.007, respectively) but also in the left non-exercised (55%, p = 0.001; 58%, p = 0.040, respectively) leg. Subjects tended to underestimate the target position more in the flexed vs. extended knee positions (7561°: − 4.6 ± 3.6°, 6050°: − 4.2 ± 4.3°, 5025°: − 2.9 ± 4.2°), irrespective of group and time. Moreover, MVIC decreased in EXP but not in EXPCG and CONCG at immediately post-intervention (p = 0.026, d = 0.52) and 24 h post-intervention (p = 0.013, d = 0.45) compared to baseline.


Altogether, a below-knee CG reduced fatigue-induced strength loss at 80° knee joint position but not JPS errors in healthy younger adults.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



Analysis of variance


Compression garment


Control group, receiving CG


Treatment group #1, performing isokinetic training with below-knee CG


Treatment group #2, performing isokinetic training without below-knee CG


Joint position sense


Peak torque


Maximal voluntary isometric contraction

MVIC60 :

MVIC test trials at 60°

MVIC80 :

MVIC test trials at 80°


Range of motion


Standard deviation


  1. Adam A, De Luca CJ, Erim Z (1998) Hand dominance and motor unit firing behavior. J Neurophysiol 80:1373–1382.

    CAS  Article  PubMed  Google Scholar 

  2. Alimi YS, Barthelemy P, Juhan C (1994) Venous pump of the calf: a study of venous and muscular pressures. J Vascu Surg 20:728–735.

    CAS  Article  Google Scholar 

  3. Arora S, Budden S, Byrne JM, Behm DG (2015) Effect of unilateral knee extensor fatigue on force and balance of the contralateral limb. Eur J Appl Physiol 115:2177–2187.

    Article  PubMed  Google Scholar 

  4. Brown SJ, Child RB, Day SH, Donnelly AE (1997) Indices of skeletal muscle damage and connective tissue breakdown following eccentric muscle contractions. Eur J Appl Physiol Occup Physiol 75:369–374.

    CAS  Article  PubMed  Google Scholar 

  5. Busko K, Gorski M, Nikolaidis PT, Mazur-Rozycka J, Lach P, Staniak Z, Gajewski J (2018) Leg strength and power in Polish striker soccer players. Acta Bioeng Biomech 20:109–116

    PubMed  Google Scholar 

  6. Cadore EL, Gonzalez-Izal M, Grazioli R, Setuain I, Pinto RS, Izquierdo M (2018) Effects of concentric and eccentric strength training on fatigue induced by concentric and eccentric exercise. Int J Sports Physiol Perform.

    Article  PubMed  Google Scholar 

  7. Collins DF, Prochazka A (1996) Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. J Physiol 496(Pt 3):857–871

    CAS  Article  Google Scholar 

  8. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Article  Google Scholar 

  9. Friden T, Roberts D, Ageberg E, Walden M, Zatterstrom R (2001) Review of knee proprioception and the relation to extremity function after an anterior cruciate ligament rupture. J Orthop Sports Phys Ther 31:567–576.

    CAS  Article  PubMed  Google Scholar 

  10. Fugl-Meyer AR, Eriksson A, Sjostrom M, Soderstrom G (1982) Is muscle structure influenced by genetical or functional factors? A study of three forearm muscles. Acta Physiol Scand 114:277–281.

    CAS  Article  PubMed  Google Scholar 

  11. Galamb K, Szilagyi B, Magyar OM, Hortobagyi T, Nagatomi R, Vaczi M, Negyesi J (2018) Effects of side-dominance on knee joint proprioceptive target-matching asymmetries. Physiol Int 105:257–265.

    CAS  Article  PubMed  Google Scholar 

  12. Ghai S, Driller MW, Masters RSW (2018) The influence of below-knee compression garments on knee-joint proprioception. Gait Post 60:258–261.

    Article  Google Scholar 

  13. Guette M, Gondin J, Martin A (2005) Time-of-day effect on the torque and neuromuscular properties of dominant and non-dominant quadriceps femoris. Chronobiol Int 22:541–558.

    Article  PubMed  Google Scholar 

  14. Halperin I, Copithorne D, Behm DG (2014) Unilateral isometric muscle fatigue decreases force production and activation of contralateral knee extensors but not elbow flexors. Appl Physiol Nutr Metab 39:1338–1344.

    Article  Google Scholar 

  15. Hortobagyi T, Hill JP, Houmard JA, Fraser DD, Lambert NJ, Israel RG (1996) Adaptive responses to muscle lengthening and shortening in humans. J Appl Physiol 80:765–772

    CAS  Article  Google Scholar 

  16. Ibegbuna V, Delis KT, Nicolaides AN, Aina O (2003) Effect of elastic compression stockings on venous hemodynamics during walking. J Vasc Surg 37:420–425.

    Article  PubMed  Google Scholar 

  17. Kawamoto JE, Aboodarda SJ, Behm DG (2014) Effect of differing intensities of fatiguing dynamic contractions on contralateral homologous muscle performance. J Sports Sci Med 13:836–845

    PubMed  PubMed Central  Google Scholar 

  18. Lattanzio PJ, Petrella RJ, Sproule JR, Fowler PJ (1997) Effects of fatigue on knee proprioception. Clin J Sport Med 7:22–27

    CAS  Article  Google Scholar 

  19. Lien N, Steel KA, Graham K, Penkala S, Quinn J, Dogramaci S, Moresi M (2014) What is the effect of compression garments on a novel kick accuracy task? Int J Sports Sci Coa 9:357–365.

    Article  Google Scholar 

  20. Marini F, Ferrantino M, Zenzeri J (2018) Proprioceptive identification of joint position versus kinaesthetic movement reproduction. Hum Mov Sci 62:1–13.

    Article  PubMed  Google Scholar 

  21. Marks R, Quinney HA (1993) Effect of fatiguing maximal isokinetic quadriceps contractions on ability to estimate knee-position. Percept Mot Skills 77:1195–1202.

    CAS  Article  PubMed  Google Scholar 

  22. Martin PG, Rattey J (2007) Central fatigue explains sex differences in muscle fatigue and contralateral cross-over effects of maximal contractions. Pflugers Arch 454:957–969.

    CAS  Article  PubMed  Google Scholar 

  23. Maton B, Thiney G, Dang S, Tra S, Bassez S, Wicart P, Ouchene A (2006) Human muscle fatigue and elastic compressive stockings. Eur J Appl Physiol 97:432–442.

    CAS  Article  PubMed  Google Scholar 

  24. Miura K, Ishibashi Y, Tsuda E, Okamura Y, Otsuka H, Toh S (2004) The effect of local and general fatigue on knee proprioception. Arthrosc J Arthrosc Related Surg Off Publ Arthrosc Assoc North Am Int Arthrosc Assoc 20:414–418.

    Article  Google Scholar 

  25. Miyamoto N, Hirata K, Mitsukawa N, Yanai T, Kawakami Y (2011) Effect of pressure intensity of graduated elastic compression stocking on muscle fatigue following calf-raise exercise. J Electromyogr Kinesiol 21:249–254.

    Article  PubMed  Google Scholar 

  26. Molinari F, Knaflitz M, Bonato P, Actis MV (2006) Electrical manifestations of muscle fatigue during concentric and eccentric isokinetic knee flexion-extension movements Ieee T. Bio Med Eng 53:1309–1316.

    Article  Google Scholar 

  27. Mothes H, Leukel C, Seelig H, Fuchs R (2017) Do placebo expectations influence perceived exertion during physical exercise? PLoS ONE 12:e0180434.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Negyesi J, Mobark A, Zhang LY, Hortobagyi T, Nagatomi R (2018) An above-knee compression garment does not improve passive knee joint position sense in healthy adults. PLoS ONE 13:e0203288.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    CAS  Article  Google Scholar 

  30. Paillard T, Chaubet V, Maitre J, Dumitrescu M, Borel L (2010) Disturbance of contralateral unipedal postural control after stimulated and voluntary contractions of the ipsilateral limb. Neurosci Res 68:301–306.

    Article  PubMed  Google Scholar 

  31. Peat JK, Barton B, Elliott EJ (2008) Statistics workbook for evidence-based healthcare. Blackwell, Malden, Mass

    Book  Google Scholar 

  32. Raju S, Fredericks R, Lishman P, Neglen P, Morano J (1993) Observations on the calf venous pump mechanism: determinants of postexercise pressure. J Vasc Surg 17:459–469

    CAS  Article  Google Scholar 

  33. Ribeiro F, Mota J, Oliveira J (2007) Effect of exercise-induced fatigue on position sense of the knee in the elderly. Eur J Appl Physiol 99:379–385.

    Article  PubMed  Google Scholar 

  34. Romero-Franco N, Jimenez-Reyes P (2017) Effects of warm-up and fatigue on knee joint position sense and jump performance. J Mot Behav 49:117–122.

    CAS  Article  PubMed  Google Scholar 

  35. Rossetti Y, Meckler C, Prablanc C (1994) Is there an optimal arm posture—deterioration of finger localization precision and comfort sensation in extreme arm-joint postures experimental. Brain Res 99:131–136

    CAS  Google Scholar 

  36. Tanaka M, McDonagh MJ, Davies CT (1984) A comparison of the mechanical properties of the first dorsal interosseous in the dominant and non-dominant hand. Eur J Appl Physiol Occup Physiol 53:17–20.

    CAS  Article  PubMed  Google Scholar 

  37. Tiggelen DV, Coorevits P, Witvrouw E (2008a) The effects of a neoprene knee sleeve on subjects with a poor versus good joint position sense subjected to an isokinetic fatigue protocol. Clin J Sport Med 18:259–265.

    Article  PubMed  Google Scholar 

  38. Vaczi M, Tihanyi J, Hortobagyi T, Racz L, Csende Z, Costa A, Pucsok J (2011) Mechanical, biochemical, and electromyographic responses to short-term eccentric-concentric knee extensor training in humans. J Strength Cond Res 25:922–932.

    Article  PubMed  Google Scholar 

  39. Vafadar AK, Cote JN, Archambault PS (2015) Sex differences in the shoulder joint position sense acuity: a cross-sectional study. BMC Musculosk Disord.

    Article  Google Scholar 

  40. van Melick N, Meddeler BM, Hoogeboom TJ, Nijhuis-van der Sanden MWG, van Cingel REH (2017) How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS ONE 12:e0189876.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Van Tiggelen D, Coorevits P, Witvrouw E (2008b) The use of a neoprene knee sleeve to compensate the deficit in knee joint position sense caused by muscle fatigue. Scand J Med Sci Sports 18:62–66.

    Article  PubMed  Google Scholar 

  42. Vangsgaard S, Norgaard LT, Flaskager BK, Sogaard K, Taylor JL, Madeleine P (2013) Eccentric exercise inhibits the H reflex in the middle part of the trapezius muscle. Eur J Appl Physiol 113:77–87.

    Article  PubMed  Google Scholar 

  43. Zhang LY, Négyesi J, Okuyama T, Tanaka M, Hortobágyi T, Nagatomi R (2019) Position of compression garment around the knee affects healthy adults’ knee joint position sense acuity. Hum Mov Sci 67:102519.

    Article  PubMed  Google Scholar 

  44. Zijdewind C, Bosch W, Goessens L, Kandou TW, Kernell D (1990) Electromyogram and force during stimulated fatigue tests of muscles in dominant and non-dominant hands. Eur J Appl Physiol Occup Physiol 60:127–132.

    CAS  Article  PubMed  Google Scholar 

Download references


The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information




JN and RN designed the research. JN, LYZ and RN performed the research. JN analyzed the results. JN directed the research. JN, TH and RN wrote the manuscript and all the authors have read and approved the final version.

Corresponding author

Correspondence to János Négyesi.

Ethics declarations

Conflict of interest

All authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Lori Ann Vallis.

Electronic supplementary material

Below is the link to the electronic supplementary material.


S1_Data_JPS. Supporting data for joint position sense errors in both the right exercised and the left non-exercised leg in each group, time point, and range of motion (XLSX 25 kb)


S2_Data_MVIC. Supporting data for maximal voluntary isometric contraction torque in both the right exercised and the left non-exercised leg in each group and time point (XLSX 12 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Négyesi, J., Zhang, L.Y., Jin, R.N. et al. A below-knee compression garment reduces fatigue-induced strength loss but not knee joint position sense errors. Eur J Appl Physiol 121, 219–229 (2021).

Download citation


  • Isokinetic exercise
  • Eccentric contractions
  • Proprioception
  • Target-matching
  • Healthy