Skip to main content
Log in

Influence of aerobic fitness on gastrointestinal barrier integrity and microbial translocation following a fixed-intensity military exertional heat stress test

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Exertional-heat stress adversely disrupts gastrointestinal (GI) barrier integrity, whereby subsequent microbial translocation (MT) can result in potentially serious health consequences. To date, the influence of aerobic fitness on GI barrier integrity and MT following exertional-heat stress is poorly characterised.

Method

Ten untrained (UT; VO2max = 45 ± 3 ml·kg−1·min−1) and ten highly trained (HT; VO2max = 64 ± 4 ml·kg−1·min−1) males completed an ecologically valid (military) 80-min fixed-intensity exertional-heat stress test (EHST). Venous blood was drawn immediately pre- and post-EHST. GI barrier integrity was assessed using the serum dual-sugar absorption test (DSAT) and plasma Intestinal Fatty-Acid Binding Protein (I-FABP). MT was assessed using plasma Bacteroides/total 16S DNA.

Results

UT experienced greater thermoregulatory, cardiovascular and perceptual strain (p < 0.05) than HT during the EHST. Serum DSAT responses were similar between the two groups (p = 0.59), although Δ I-FABP was greater (p = 0.04) in the UT (1.14 ± 1.36 ng·ml−1) versus HT (0.20 ± 0.29 ng·ml−1) group. Bacteroides/Total 16S DNA ratio was unchanged (Δ; -0.04 ± 0.18) following the EHST in the HT group, but increased (Δ; 0.19 ± 0.25) in the UT group (p = 0.05). Weekly aerobic training hours had a weak, negative correlation with Δ I-FABP and Bacteroides/total 16S DNA responses.

Conclusion

When exercising at the same absolute workload, UT individuals are more susceptible to small intestinal epithelial injury and MT than HT individuals. These responses appear partially attributable to greater thermoregulatory, cardiovascular, and perceptual strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CV:

Coefficient of variation

DSAT:

Dual sugar absorption test

EDTA:

Ethylenediaminetetraacetic acid

EHS:

Exertional heat stroke

EHST:

Exertional heat stress test

ELISA:

Enzyme linked immunosorbent assay

GI:

Gastrointestinal

HPLC:

High performance liquid chromatography

HR:

Heart rate

HT:

Highly trained

I-FABP:

Intestinal fatty-acid binding protein

I-HSP:

Intracellular heat shock protein

ISAK:

International Society for the Advancement of Anthropometric Kinanthropometry

LPS:

Lipopolysaccharide

L/R:

Lactulose-to-rhamnose

MT:

Microbial translocation

qPCR:

Quantitative polymerase chain reaction

RH:

Relative humidity

RPE:

Rate of perceived exertion

SD:

Standard deviation

SEM:

Sensor electronics module

T core :

Core body temperature

T body :

Mean body temperature

T skin :

Mean skin temperature

TS:

Thermal sensation

UT:

Untrained

\(\dot{V}{\text{O}}_{2\max }\) :

Maximal oxygen uptake

References

  • Aguinis H, Gottfredson RK, Joo H (2013) Best-practice recommendations for defining, identifying, and handling outliers. Organ Res Methods 16(2):270–301

    Article  Google Scholar 

  • Armstrong LE, Lee EC, Armstrong EM (2018) Interactions of gut microbiota, endotoxemia, immune function, and diet in exertional heatstroke. J Sports Med. https://doi.org/10.1155/2018/5724575

    Article  Google Scholar 

  • Armed Forces Health Surveillance Centre (2020) Update: heat illness, active component, U.S. Armed Forces 2019. Med Surveill Mon Rep 27(4):4–9

  • Belval LN, Casa DJ, Adams WM, Chiampas GT, Holschen JC, Hosokawa Y, Jardine J, Kane SF, Labotz M, Lemieux RS, McClaine KB (2018) Consensus statement-prehospital care of exertional heat stroke. Prehospital Emerg Care 22(3):392–397

    Article  Google Scholar 

  • Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M, Tilg H, Watson A, Wells JM (2014) Intestinal permeability—a new target for disease prevention and therapy. BMC Gastroenterol 14(1):189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borg G (1970) Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med 2:92–98

    CAS  PubMed  Google Scholar 

  • Bosenberg AT, Brock-Utne JG, Gaffin SL, Wells MT, Blake GT (1988) Strenuous exercise causes systemic endotoxemia. J Appl Physiol 65(1):106–108

    Article  CAS  PubMed  Google Scholar 

  • Bouchama A, Knochel JP (2002) Heat stroke. N Engl J Med 346(25):1978–1988

    Article  CAS  PubMed  Google Scholar 

  • Camus G, Poortmans J, Nys M, Deby-Dupont G, Duchateau J, Deby C, Lamy M (1997) Mild endotoxaemia and the inflammatory response induced by a marathon race. Clin Sci 92(4):415–422

    Article  CAS  Google Scholar 

  • Cani PD (2018) Human gut microbiome: hopes, threats and promises. Gut 67(9):1716–1725

    Article  CAS  PubMed  Google Scholar 

  • Casa DJ, Clarkson PM, Roberts WO (2005) American College of Sports Medicine roundtable on hydration and physical activity: consensus statements. Curr Sports Med Rep 4(3):115–127

    Article  PubMed  Google Scholar 

  • Cheung SS, McLellan TM (1998) Heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensable heat stress. J Appl Physiol 84(5):1731–1739

    Article  CAS  PubMed  Google Scholar 

  • Christensen MJ, Eller E, Kjaer HF, Broesby-Olsen S, Mortz CG, Bindslev-Jensen C (2019) Exercise-induced anaphylaxis: causes, consequences, and management recommendations. Expert Rev Clin Immunol 15(3):265–273

    Article  CAS  PubMed  Google Scholar 

  • Costa RJS, Snipe RMJ, Kitic CM, Gibson PR (2017) Systematic review: exercise-induced gastrointestinal syndrome—implications for health and intestinal disease. Aliment Pharmacol Ther 46(3):246–265

    Article  CAS  PubMed  Google Scholar 

  • de Groot DW, Gallimore RP, Thompson SM, Kenefick RW (2013) Extremity cooling for heat stress mitigation in military and occupational settings. J Therm Biol 38(6):305–310

    Article  Google Scholar 

  • De Jong J, Thompson B, Han A (2019) Methodological recommendations for menstrual cycle research in sports and exercise. Med Sci Sports Exerc 51(12):2610–2617

    Article  Google Scholar 

  • Deitch EA (2012) Gut-origin sepsis: evolution of a concept. Surgeon 10(6):350–356

    Article  PubMed  PubMed Central  Google Scholar 

  • Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37(2):247–248

    Article  CAS  PubMed  Google Scholar 

  • Dokladny K, Zuhl MN, Moseley PL (2016) Intestinal epithelial barrier function and tight junction proteins with heat and exercise. J Appl Physiol 120(6):692–701

    Article  CAS  PubMed  Google Scholar 

  • Durnin JV, Womersley JV (1974) Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 32(1):77–97

    Article  CAS  PubMed  Google Scholar 

  • Edinburgh RM, Hengist A, Smith HA, Travers RL, Koumanov F, Betts JA, Thompson D, Walhin JP, Wallis GA, Hamilton DL, Stevenson EJ (2018) Preexercise breakfast ingestion versus extended overnight fasting increases postprandial glucose flux after exercise in healthy men. Am J Physiol Endocrinol Metab 315(5):1062–1074

    Article  CAS  Google Scholar 

  • Epstein Y, Druyan A, Heled Y (2012) Heat injury prevention—a military perspective. J Strength Cond Res 26:82–86

    Article  Google Scholar 

  • Epstein Y, Moran DS, Shapiro Y, Sohar E, Shemer J (1999) Exertional heat stroke: a case series. Med Sci Sports Exerc 31(2):224–228

    Article  CAS  PubMed  Google Scholar 

  • Fallowfield JL, Delves SK, Hill NE, Lanham-New SA, Shaw AM, Brown PE, Bentley C, Wilson DR, Allsopp AJ (2019) Serum 25-hydroxyvitamin D fluctuations in military personnel during 6-month summer operational deployments in Afghanistan. Br J Nutr 121(4):384–392

    Article  CAS  PubMed  Google Scholar 

  • Fehrenbach E, Niess AM, Veith R, Dickhuth HH, Northoff H (2001) Changes of HSP72-expression in leukocytes are associated with adaptation to exercise under conditions of high environmental temperature. J Leukoc Biol 69(5):747–754

    CAS  PubMed  Google Scholar 

  • Fleming SC, Duncan A, Russell RI, Laker MF (1996) Measurement of sugar probes in serum: an alternative to urine measurement in intestinal permeability testing. Clin Chem 42(3):445–448

    Article  CAS  PubMed  Google Scholar 

  • Gaskell SK, Taylor B, Muir J, Costa RJ (2019) Impact of 24-hour high and low fermentable oligo-di-mono-saccharide polyol diets on markers of exercise-induced gastrointestinal syndrome in response to exertional-heat stress. Appl Physiol Nutr Metab. https://doi.org/10.1139/apnm-2019-0187

    Article  PubMed  Google Scholar 

  • Gabriel H, Kindermann W (1996) Ultrasound of the abdomen in endurance athletes. Eur J Appl Physiol Occup Physiol 73(1–2):191–193

    Article  CAS  PubMed  Google Scholar 

  • Havenith G, Luttikholt VG, Vrijkotte TGM (1995) The relative influence of body characteristics on humid heat stress response. Eur J Appl Physiol Occup Physiol 70(3):270–279

    Article  CAS  PubMed  Google Scholar 

  • Jay O, Kenny GP (2007) The determination of changes in body heat content during exercise using calorimetry and thermometry. J Human Environ Syst 10(1):19–29

    Article  Google Scholar 

  • Kazman JB, Heled Y, Lisman PJ, Druyan A, Deuster PA, O’Connor FG (2013) Exertional heat illness: the role of heat tolerance testing. Cur Sports Med Rep 12(2):101–105

    Article  Google Scholar 

  • Komine S, Akiyama K, Warabi E, Oh S, Kuga K, Ishige K, Togashi S, Yanagawa T, Shoda J (2017) Exercise training enhances in vivo clearance of endotoxin and attenuates inflammatory responses by potentiating Kupffer cell phagocytosis. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Landers-Ramos RQ, Jenkins NT, Spangenburg EE, Hagberg JM, Prior SJ (2014) Circulating angiogenic and inflammatory cytokine responses to acute aerobic exercise in trained and sedentary young men. Eur J Appl Physiol 114(7):1377–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leon LR, Bouchama A (2011) Heat stroke. Compr Physiol 5(2):611–647

    Google Scholar 

  • Lim C (2018) Heat sepsis precedes heat toxicity in the pathophysiology of heat stroke—a new paradigm on an ancient disease. Antioxidants 7(11):149

    Article  PubMed Central  CAS  Google Scholar 

  • Lippi G, Schena F, Salvagno GL, Montagnana M, Ballestrieri F, Guidi GC (2006) Comparison of the lipid profile and lipoprotein (a) between sedentary and highly trained subjects. Clin Chem Lab Med 44(3):322–326

    CAS  PubMed  Google Scholar 

  • March DS, Jones AW, Thatcher R, Davison G (2019) The effect of bovine colostrum supplementation on intestinal injury and circulating intestinal bacterial DNA following exercise in the heat. Eur J Nutr 58(4):1441–1451

    Article  PubMed  Google Scholar 

  • Marfell-Jones et al (2006) ISAK manual, International standards for anthropometric assessment. In: edited by Marfell-Jones M, Olds T, Stewart A, Lindsay Carter LE. International Society for the Advancement of Kinanthropometry

  • Met Office (2019) Cambourne. https://www.metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/cambornedata.txt. Accessed 23 Feb 2020

  • Military Headquarters of the Surgeon General (2019). https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/793094/JSP_539_Part_2_V3.1__Updated_04-19_.pdf. Accessed 24 Mar 2020

  • Moore AC, Stacey MJ, Bailey KGH, Bunn RJ, Woods DR, Haworth KJ, Brett SJ, Folkes SEF (2016) Risk factors for heat illness among British soldiers in the hot collective training environment. J R Army Med Corps 162(6):434–439

    Article  PubMed  Google Scholar 

  • Morrison SA, Cheung SS, Cotter JD (2014) Bovine colostrum, training status, and gastrointestinal permeability during exercise in the heat: a placebo-controlled double-blind study. Appl Physiol Nutr Metab 39(9):1070–1082

    Article  CAS  PubMed  Google Scholar 

  • Nelson DA, Deuster PA, O'Connor FG, Kurina LM (2018) Timing and predictors of mild and severe heat illness among new military enlistees. Med Sci Sports Exerc 50(8):1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogden HB, Child RB, Fallowfield JL, Delves SK, Westwood CS, Layden JD (2020a) The gastrointestinal exertional heat stroke paradigm: pathophysiology, assessment, severity, aetiology and nutritional countermeasures. Nutrients 12:537

    Article  CAS  PubMed Central  Google Scholar 

  • Ogden HB, Fallowfield JL, Child RB, Davison G, Fleming SC, Edinburgh RM, Delves SK, Millyard A, Westwood CS, Layden J (2020b) Reliability of gastrointestinal barrier integrity and microbial translocation biomarkers at rest and following exertional heat stress. Physiol Rep 8:e14374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Païssé S, Valle C, Servant F, Courtney M, Burcelin R, Amar J, Lelouvier B (2016) Comprehensive description of blood microbiome from healthy donors assessed by 16 S targeted metagenomic sequencing. Transfusion 56(5):1138–1147

    Article  PubMed  CAS  Google Scholar 

  • Pires W, Veneroso CE, Wanner SP, Pacheco DA, Vaz GC, Amorim FT, Tonoli C, Soares DD, Coimbra CC (2017) Association between exercise-induced hyperthermia and intestinal permeability: a systematic review. Sports Med 47(7):1389–1403

    Article  PubMed  Google Scholar 

  • Ramanathan NL (1964) A new weighting system for mean surface temperature of the human body. J Appl Physiol 19(3):531–533

    Article  CAS  PubMed  Google Scholar 

  • Reihmane D, Tretjakovs P, Kaupe J, Sars M, Valante R, Jurka A (2012) Systemic pro-inflammatory molecule response to acute submaximal exercise in moderately and highly trained athletes. Age (years) 26(5):26–32

    Google Scholar 

  • Sakurada S, Hales JRS (1998) A role for gastrointestinal endotoxins in enhancement of heat tolerance by physical fitness. J Appl Physiol 84(1):207–214

    Article  CAS  PubMed  Google Scholar 

  • Saltzman JR, Kowdley KV, Perrone G, Russell RM (1995) Changes in small-intestine permeability with aging. J Am Geriatr Soc 43(2):160–164

    Article  CAS  PubMed  Google Scholar 

  • Saweirs WM, Andrews DJ, Low-Beer TS (1985) The double sugar test of intestinal permeability in the elderly. Age Ageing 14(5):312–315

    Article  CAS  PubMed  Google Scholar 

  • Sawka MN, Leon LR, Montain SJ, Sonna LA (2011) Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr Physiol 1(4):1883–1928

    Article  PubMed  Google Scholar 

  • Selkirk GA, McLellan TM (2001) Influence of aerobic fitness and body fatness on tolerance to uncompensable heat stress. J Appl Physiol 91(5):2055–2063

    Article  CAS  PubMed  Google Scholar 

  • Selkirk GA, McLellan TM, Wright HE, Rhind SG (2008) Mild endotoxemia, NF-κB translocation, and cytokine increase during exertional heat stress in trained and untrained individuals. Am J Physiol Regul Integr Comp Physiol 295(2):611–623

    Article  CAS  Google Scholar 

  • Selkirk GA, McLellan TM, Wright HE, Rhind SG (2009) Expression of intracellular cytokines, HSP72, and apoptosis in monocyte subsets during exertional heat stress in trained and untrained individuals. Am J Physiol Regul Integr Comp Physiol 296(3):R575–R586

    Article  CAS  PubMed  Google Scholar 

  • Shirreffs SM, Maughan RJ (1994) The effect of posture change on blood volume, serum potassium and whole body electrical impedance. Eur J Appl Physiol 69(5):461–463

    Article  CAS  Google Scholar 

  • Snipe RM, Khoo A, Kitic CM, Gibson PR, Costa RJ (2018) The impact of exertional-heat stress on gastrointestinal integrity, gastrointestinal symptoms, systemic endotoxin and cytokine profile. Eur J Appl Physiol 118(2):389–400

    Article  CAS  PubMed  Google Scholar 

  • Spitz MG, Castellani JW, Freund BJ, Sawka MN (2012). https://apps.dtic.mil/dtic/tr/fulltext/u2/a571324.pdf. Accessed 30 Mar 2020

  • Stacey MJ, Brett S, Woods D, Jackson S, Ross D (2016) Case ascertainment of heat illness in the British Army: evidence of under-reporting from analysis of medical and command notifications, 2009–2013. J R Army Med Corps 162(6):428–433

    Article  PubMed  Google Scholar 

  • Stacey MJ, Parsons IT, Woods DR, Taylor PN, Ross D, Brett SJ (2015) Susceptibility to exertional heat illness and hospitalisation risk in UK military personnel. BMJ Open Sport Exerc Med 1(1):e000055

    Article  PubMed  PubMed Central  Google Scholar 

  • Szymanski MC, Gillum TL, Gould LM, Morin DS, Kuennen MR (2018) Short-term dietary curcumin supplementation reduces gastrointestinal barrier damage and physiological strain responses during exertional heat stress. J Appl Physiol 124(2):330–340

    Article  CAS  PubMed  Google Scholar 

  • Toner MM, Drolet LL, Pandolf KB (1986) Perceptual and physiological responses during exercise in cool and cold water. Percept Mot Skills 62(1):211–220

    Article  CAS  PubMed  Google Scholar 

  • van Wijck K, Lenaerts K, Van Bijnen AA, Boonen B, Van Loon LJ, Dejong CH, Buurman WA (2012) Aggravation of exercise-induced intestinal injury by Ibuprofen in athletes. Med Sci Sports Exerc 44(12):2257–2262

    Article  PubMed  CAS  Google Scholar 

  • van Wijck K, Lenaerts K, Van Loon LJ, Peters WH, Buurman WA, Dejong CH (2011) Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS One. https://doi.org/10.1371/journal.pone.0022366

    Article  PubMed  PubMed Central  Google Scholar 

  • Vargas N, Marino F (2016) Heat stress, gastrointestinal permeability and interleukin-6 signalling—implications for exercise performance and fatigue. Temperature 3(2):240–251

    Article  Google Scholar 

  • Vincent WJ, Weir JP (1995) Quantifying reliability. In: Statistics in kinesiology, 5th edn. Human Kinetics, Champaign, pp 214–228

  • Wallace RF, Kriebel D, Punnett L, Wegman DH, Wenger CB, Gardner JW, Kark JA (2006) Risk factors for recruit exertional heat illness by gender and training period. Aviat Space Environ Med 77(4):415–421

    PubMed  Google Scholar 

  • Waterhouse J, Drust B, Weinert D, Edwards B, Gregson W, Atkinson G, Kao S, Aizawa S, Reilly T (2005) The circadian rhythm of core temperature: origin and some implications for exercise performance. Chronobiol Int 22(2):207–225

    Article  PubMed  Google Scholar 

  • Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, Theodorou V, Dekker J, Méheust A, De Vos WM, Mercenier A (2017) Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol 312(3):171–193

    Article  Google Scholar 

  • Westwood CS, Fallowfield JL, Delves SK, Nunns M, Ogden HB, Layden JD (2020) Individual risk factors associated with exertional heat illness: a systematic review. Exp Physiol. https://doi.org/10.1113/EP088458

    Article  PubMed  Google Scholar 

  • Winter EM, Jones AM, Davison RC, Bromley PD, Mercer TH (2007) The British association of sport and exercise science guidelines, vol 1. Routledge, Oxford

    Google Scholar 

  • Wright HE, Selkirk GA, McLellan TM (2010) HPA and SAS responses to increasing core temperature during uncompensable exertional heat stress in trained and untrained males. Eur J Appl Physiol 108(5):987–997

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work: HO, JF, RC, GD, SF, SD, AM, CW, JL. Drafted the work or revised it critically for important intellectual content: HO, JF, RC, GD, SD, JL. Approved the version to be published: HO, JF, RC, GD, SF, SD, AM, CW, JL. Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: HO, JF, RC, GD, SF, SD, AM, CW, JL.

Corresponding author

Correspondence to Henry B. Ogden.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Plymouth MARJON University (Approval Code: EP096).

Additional information

Communicated by Narihiko Kondo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogden, H.B., Fallowfield, J.L., Child, R.B. et al. Influence of aerobic fitness on gastrointestinal barrier integrity and microbial translocation following a fixed-intensity military exertional heat stress test. Eur J Appl Physiol 120, 2325–2337 (2020). https://doi.org/10.1007/s00421-020-04455-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-020-04455-w

Keywords

Navigation