Skip to main content

Effects of 3-month high-intensity interval training vs. moderate endurance training and 4-month follow-up on fat metabolism, cardiorespiratory function and mitochondrial respiration in obese adults

Abstract

Purpose

The purpose of this study was to investigate, in obese adults, changes in body composition, physical capacities, fat oxidation and ex vivo mitochondrial respiration induced by a 3-month either moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT); afterwards, the patients were followed for four months.

Methods

Thirty-two patients (mean age 39 years; mean body mass index [BMI] 36 kg∙m−2) participated in this study attending ~ 34 sessions of training. At baseline (PRE), at the end of the program (POST) and after follow-up, body composition, peak O2 uptake (V′O2peak) and fat oxidation rate were measured. Vastus lateralis biopsies for the evaluation of mitochondrial respiration were performed only at PRE and POST.

Results

At POST, body mass (BM) and fat mass (FM) decreased (− 6 and − 14%, respectively, P < 0.05) in MICT and HIIT; V′O2peak increased in both groups (+ 6 and + 16%, respectively, P < 0.05). Maximal fat oxidation rate increased only after HIIT (P < 0.001). Maximal ADP-stimulated mitochondrial respiration normalized by citrate synthase increased (P < 0.05) by 67% and 36% in MICT and HIIT, respectively, without significant difference. After follow-up, BM and FM were still lower (− 4 and − 20%, respectively, P < 0.050) compared with baseline in both groups. Only after HIIT, V′O2peak (+ 8%) and maximal fat oxidation rate were still higher (P < 0.05).

Conclusions

HIIT was more effective in improving and maintaining V’O2peak and fat oxidation. These results may be relevant for an appropriate prescription of training programs designed to optimize aerobic fitness in obese subjects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

\({\text{a-}}\bar{v}{\text{O}}_2\ {\text{diff}}\) :

Arteriovenous oxygen difference

BM:

Body mass

BMI:

Body mass index

CO:

Cardiac output

CI:

Oxidative phosphorylation complex I

CII:

Oxidative phosphorylation complex II

DAP:

Diastolic arterial pressure

ETS:

Mitochondrial electron transport system

FAT:

Lipid oxidation rate during the incremental test

FM:

Fat mass

FFM:

Fat-free mass

HIIT:

High-intensity interval training

HOMA-IR:

Homeostasis Model Assessment

HR:

Heart rate

IPAQ-SF:

International Physical Activity Questionnaire Short Form

MICT:

Moderate-intensity continuous training

SAP:

Systolic arterial pressure

SF12:

Short-Form 12, questionnaire about health-related quality of life

SF12_MI:

Short-Form 12, mental index

SF12_PI:

Short-Form 12, physical index

SVC:

Systemic vascular conductance

V′CO2 :

Pulmonary CO2 output

V′O2 :

Pulmonary O2 uptake

References

  • Achten J, Gleeson M, Jeukendrup AE (2002) Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sports Exerc 34:92–97. https://doi.org/10.1097/00005768-200201000-00015

    Article  PubMed  Google Scholar 

  • Achten J, Jeukendrup AE (2004) Optimizing fat oxidation through exercise and diet. Nutrition 20:716–727. https://doi.org/10.1016/j.nut.2004.04.005

    CAS  Article  PubMed  Google Scholar 

  • Ara I, Larsen S, Stallknecht B et al (2011) Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans. Int J Obes 35:99–108

    CAS  Article  Google Scholar 

  • Bartlett JD, Close GL, Maclaren DPM et al (2011) High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. J Sports Sci 29:547–553. https://doi.org/10.1080/02640414.2010.545427

    Article  PubMed  Google Scholar 

  • Bishop DJ, Botella J, Genders AJ et al (2019) High-intensity exercise and mitochondrial biogenesis: current controversies and future research directions. Physiology 34:56–70. https://doi.org/10.1152/physiol.00038.2018

    CAS  Article  PubMed  Google Scholar 

  • Bloos F, Reinhart K (2009) Venous oximetry. In: Hedenstierna G, Mancebo J, Brochard L, Pinsky MR (eds) Applied physiology in intensive care medicine. Springer, Berlin, pp 53–55

    Chapter  Google Scholar 

  • Boushel R, Gnaiger E, Calbet JAL et al (2011) Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans. Mitochondrion 11:303–307. https://doi.org/10.1016/j.mito.2010.12.006

    CAS  Article  PubMed  Google Scholar 

  • Boyd JC, Simpson CA, Jung ME, Gurd BJ (2013) Reducing the intensity and volume of interval training diminishes cardiovascular adaptation but not mitochondrial biogenesis in overweight/obese men. PLoS ONE 8:1–8

    Google Scholar 

  • Brown RE, Kuk JL (2015) Consequences of obesity and weight loss: a devil’s advocate position. Obes Rev 16:77–87. https://doi.org/10.1111/obr.12232

    CAS  Article  PubMed  Google Scholar 

  • Charloux A, Lonsdorfer-Wolf E, Richard R et al (2000) A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: Comparison with the ″direct″ Fick method. Eur J Appl Physiol 82:313–320

    CAS  Article  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn.

  • Craig CL, Marshall AL, Sjöström M et al (2003) International physical activity questionnaire: 12-Country reliability and validity. Med Sci Sports Exerc 35:1381–1395

    Article  Google Scholar 

  • Dandanell S, Meinild-Lundby A-K, Andersen AB et al (2018) Determinants of maximal whole body fat oxidation in elite cross-country skiers: role of skeletal muscle mitochondria. Scand J Med Sci Sports. https://doi.org/10.1111/sms.13298

    Article  PubMed  Google Scholar 

  • Daussin FN, Ponsot E, Dufour SP et al (2007) Improvement of V̇O2maxby cardiac output and oxygen extraction adaptation during intermittent versus continuous endurance training. Eur J Appl Physiol 101:377–383

    Article  Google Scholar 

  • de Mello AH, Costa AB, Engel JDG, Rezin GT (2018) Mitochondrial dysfunction in obesity. Life Sci 192:26–32

    Article  Google Scholar 

  • Devarshi P, McNabney S, Henagan T (2017) Skeletal muscle nucleo-mitochondrial crosstalk in obesity and type 2 diabetes. IJMS 18:831. https://doi.org/10.3390/ijms18040831

    CAS  Article  Google Scholar 

  • Donnelly JE, Blair SN, Jakicic JM et al (2009) Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 41:459–471

    Article  Google Scholar 

  • Feingold A (2009) Trials in the same metric as for classical analysis. Psychol Methods 14:43–53. https://doi.org/10.1037/a0014699.Effect

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher-Wellman KH, Weber TM, Cathey BL et al (2014) Mitochondrial respiratory capacity and content are normal in young insulin-resistant obese humans. Diabetes 63:132–141

    CAS  Article  Google Scholar 

  • Formentini L, Ryan AJ, Gálvez-Santisteban M et al (2017) Mitochondrial H+-ATP synthase in human skeletal muscle: contribution to dyslipidaemia and insulin resistance. Diabetologia 60:2052–2065. https://doi.org/10.1007/s00125-017-4379-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Frayn KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol 55:628–634

    CAS  Article  Google Scholar 

  • García-Hermoso A, Cerrillo-Urbina AJ, Herrera-Valenzuela T et al (2016) Is high-intensity interval training more effective on improving cardiometabolic risk and aerobic capacity than other forms of exercise in overweight and obese youth? A meta-analysis. Obes Rev 17:531–540

    Article  Google Scholar 

  • Gelman A, Hill J, Yajima M (2012) Why we (usually) don’t have to worry about multiple comparisons. J Res Educ Eff 5:189–211. https://doi.org/10.1080/19345747.2011.618213

    Article  Google Scholar 

  • Gillen JB, Gibala MJ (2014) High-intensity interval training: a time-efficient exercise strategy to improve health and fitness? Appl Physiol Nutr Metab 39:409–412

    Article  Google Scholar 

  • Gnagnarella P, Salvini S, Parpinel M (2015) Food composition database for epidemiological studies in Italy. https://www.bda-ieo.it/. Version 1. Accessed 1 Sept 2019

  • Granata C, Oliveira RSF, Little JP et al (2016) Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. FASEB J 30:959–970. https://doi.org/10.1096/fj.15-276907

    CAS  Article  PubMed  Google Scholar 

  • Gray DS, Bray GA, Gemayel N, Karl K (1989) Effect of obesity on bioelectrical impedance. Am J Clin Nutr 50:255–260

    CAS  Article  Google Scholar 

  • Harris J, Benedict F (1918) A biometric study of human basal metabolism. Proc Natl Acad Sci USA 4:370–373

    CAS  Article  Google Scholar 

  • Hetlelid KJ, Plews DJ, Herold E et al (2015) Rethinking the role of fat oxidation: substrate utilisation during high-intensity interval training in well-trained and recreationally trained runners. BMJ Open Sport Exerc Med 1:e000047. https://doi.org/10.1136/bmjsem-2015-000047

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes MC, Ramos SV, Turnbull PC et al (2015) Mitochondrial bioenergetics and fiber type assessments in microbiopsy vs. Bergstrom percutaneous sampling of human skeletal muscle. Front Physiol 6:1–10. https://doi.org/10.3389/fphys.2015.00360

    Article  Google Scholar 

  • Hwang H, Bowen BP, Lefort N et al (2010) Proteomics analysis of human skeletal muscle reveals novel abnormalities in obesity and type 2 diabetes. Diabetes 59:33–42

    CAS  Article  Google Scholar 

  • International Physical Activity Questionnaire (2005) Guidelines for data processing and analysis of the international physical activity questionnaire (IPAQ)—Short and Long Forms, revised on November 2005. Ipaq 1–15

  • Jung ME, Bourne JE, Beauchamp MR et al (2015) High-intensity interval training as an efficacious alternative to moderate-intensity continuous training for adults with prediabetes. J Diabetes Res. https://doi.org/10.1155/2015/191595

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelley DE, Simoneau JA (1994) Impaired free fatty acid utilization by skeletal muscle in non-insulin- dependent diabetes mellitus. J Clin Invest 94:2349–2356. https://doi.org/10.1172/JCI117600

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kras KA, Langlais PR, Hoffman N et al (2018) Obesity modifies the stoichiometry of mitochondrial proteins in a way that is distinct to the subcellular localization of the mitochondria in skeletal muscle. Metab Clin Exp 89:18–26. https://doi.org/10.1016/j.metabol.2018.09.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kuznetsov AV, Kunz WS, Saks V et al (2003) Cryopreservation of mitochondria and mitochondrial function in cardiac and skeletal muscle fibers. Anal Biochem 319:296–303

    CAS  Article  Google Scholar 

  • Lanzi S, Codecasa F, Cornacchia M et al (2014) Fat oxidation, hormonal and plasma metabolite kinetics during a submaximal incremental test in lean and obese adults. PLoS ONE. https://doi.org/10.1371/journal.pone.0088707

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsen S, Wright-Paradis C, Gnaiger E et al (2012) Cryopreservation of human skeletal muscle impairs mitochondrial function. Cryo Lett 33:170–176

    CAS  Google Scholar 

  • Lazzer S, Tringali G, Caccavale M et al (2017) Effects of high-intensity interval training on physical capacities and substrate oxidation rate in obese adolescents. J Endocrinol Invest. https://doi.org/10.1007/s40618-016-0551-4

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr LA, Randall RJ (1951) Protein measurement with the folin phenol reagent*. Anal Biochem 217:220–230

    Google Scholar 

  • Lukaski HC, Bolonchuk WW, Hall CB, Siders WA (1986) Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol 60:1327–1332

    CAS  Article  Google Scholar 

  • Lunt H, Draper N, Marshall HC et al (2014) High intensity interval training in a real world setting: a randomized controlled feasibility study in overweight inactive adults, measuring change in maximal oxygen uptake. PLoS ONE 9:e83256

    Article  Google Scholar 

  • MacInnis MJ, Gibala MJ (2017) Physiological adaptations to interval training and the role of exercise intensity: training adaptations and the nature of the stimulus. J Physiol 595:2915–2930. https://doi.org/10.1113/JP273196

    CAS  Article  PubMed  Google Scholar 

  • MacInnis MJ, Zacharewicz E, Martin BJ et al (2016) Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. J Physiol 00:1–14. https://doi.org/10.1113/JP272570

    CAS  Article  Google Scholar 

  • Menshikova EV, Ritov VB, Ferrell RE et al (2007) Characteristics of skeletal muscle mitochondrial biogenesis induced by moderate-intensity exercise and weight loss in obesity. J Appl Physiol 103:21–27

    CAS  Article  Google Scholar 

  • Meyer A, Charles AL, Zoll J et al (2014) Cryopreservation with dimethyl sulfoxide prevents accurate analysis of skinned skeletal muscle fibers mitochondrial respiration. Biochimie 100:227–233. https://doi.org/10.1016/j.biochi.2014.01.014

    CAS  Article  PubMed  Google Scholar 

  • Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273. https://doi.org/10.1038/ng1180

    CAS  Article  PubMed  Google Scholar 

  • Nair KS, Irving BA, Lanza IR (2011) Can dietary nitrates enhance the efficiency of mitochondria? Cell Metab 13:117–118

    CAS  Article  Google Scholar 

  • Nordby P, Saltin B, Helge JW (2006) Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity? Scand J Med Sci Sports 16:209–214. https://doi.org/10.1111/j.1600-0838.2005.00480.x

    CAS  Article  PubMed  Google Scholar 

  • O’Donovan G, Thomas EL, McCarthy JP et al (2009) Fat distribution in men of different waist girth, fitness level and exercise habit. Int J Obes 33:1356–1362

    Article  Google Scholar 

  • Patti ME, Butte AJ, Crunkhorn S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100:8466–8471. https://doi.org/10.1073/pnas.1032913100

    CAS  Article  PubMed  Google Scholar 

  • Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465

    CAS  Article  Google Scholar 

  • Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. In: Methods in molecular biology. pp 25–58

  • Richard R, Lonsdorfer-Wolf E, Charloux A et al (2001) Non-invasive cardiac output evaluation during a maximal progressive exercise test, using a new impedance cardiograph device. Eur J Appl Physiol 85:202–207

    CAS  Article  Google Scholar 

  • Ritov VB, Menshikova EV, He J et al (2005) Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54:8–14. https://doi.org/10.2337/diabetes.54.1.8

    CAS  Article  PubMed  Google Scholar 

  • Ritov VB, Menshikova EV, Azuma K et al (2009) Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab 298:E49–E58

    Article  Google Scholar 

  • Robinson SL, Hattersley J, Frost GS et al (2015) Maximal fat oxidation during exercise is positively associated with 24-hour fat oxidation and insulin sensitivity in young, healthy men. J Appl Physiol 118:1415–1422. https://doi.org/10.1152/japplphysiol.00058.2015

    CAS  Article  PubMed  Google Scholar 

  • Saladini F, Palatini P (2017) Isolated systolic hypertension in young individuals: pathophysiological mechanisms, prognostic significance, and clinical implications. High Blood Press Cardiovasc Prev 24:133–139. https://doi.org/10.1007/s40292-017-0199-y

    Article  PubMed  Google Scholar 

  • Salvadego D, Keramidas ME, Brocca L et al (2016) Separate and combined effects of a 10-d exposure to hypoxia and inactivity on oxidative function in vivo and mitochondrial respiration ex vivo in humans. J Appl Physiol 121:154–163. https://doi.org/10.1152/japplphysiol.00832.2015

    CAS  Article  PubMed  Google Scholar 

  • Sawyer BJ, Tucker WJ, Bhammar DM et al (2016) Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. J Appl Physiol (Bethesda, Md: 1985) 121:279–288

    Article  Google Scholar 

  • SIO-ADI (2016) Italian’s Standard for the treatment of obesity. In: Società Italiana di Nutrizione Umana. https://www.sio-obesita.org/. Accessed 1 Sept 2019

  • Spinazzi M, Casarin A, Pertegato V et al (2012) Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc 7:1235–1246

    CAS  Article  Google Scholar 

  • Srere PA (1969) Citrate synthase. Methods Enzymol 3:5

    Google Scholar 

  • Thrush AB, Dent R, McPherson R, Harper ME (2013) Implications of mitochondrial uncoupling in skeletal muscle in the development and treatment of obesity. FEBS J 280:5015–5029

    CAS  Article  Google Scholar 

  • Twisk JWR (2006) Applied multilevel analysis: a practical guide. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Vaccari F, Floreani M, Tringali G et al (2019) Metabolic and muscular factors limiting aerobic exercise in obese subjects. Eur J Appl Physiol. https://doi.org/10.1007/s00421-019-04167-w

    Article  PubMed  Google Scholar 

  • Vella CA, Ontiveros D, Zubia RY (2011) Cardiac function and arteriovenous oxygen difference during exercise in obese adults. Eur J Appl Physiol 111:915–923

    Article  Google Scholar 

  • Vijgen GHEJ, Bouvy ND, Hoeks J et al (2013) Impaired skeletal muscle mitochondrial function in morbidly obese patients is normalized one year after bariatric surgery. Surg Obes Relat Dis 9:936–941

    Article  Google Scholar 

  • Wallman K, Plant LA, Rakimov B, Maiorana AJ (2009) The effects of two modes of exercise on aerobic fitness and fat mass in an overweight population. Res Sports Med 17:156–170. https://doi.org/10.1080/15438620903120215

    Article  PubMed  Google Scholar 

  • Ware JE, Kosinski M, Keller SD (1996) A 12-item short-form health survey: construction of scales and preliminary tests of reliability and validity. Med Care 34:220–233

    Article  Google Scholar 

  • Wijngaarden MA, van der Zon GC, van Dijk KW et al (2013) Effects of prolonged fasting on AMPK signaling, gene expression, and mitochondrial respiratory chain content in skeletal muscle from lean and obese individuals. Am J Physiol Endocrinol Met. https://doi.org/10.1152/ajpendo.00008.2013

    Article  Google Scholar 

  • Williams EP, Mesidor M, Winters K et al (2015) Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr Obes Rep 4:363–370. https://doi.org/10.1007/s13679-015-0169-4

    Article  Google Scholar 

  • Woltman H, Feldstain A, MacKay JC, Rocchi M (2012) An introduction to hierarchical linear modeling. TQMP 8:52–69. https://doi.org/10.20982/tqmp.08.1.p052

    Article  Google Scholar 

  • Wüst RCI, Myers DS, Stones R et al (2011) Regional skeletal muscle remodeling and mitochondrial dysfunction in right ventricular heart failure. Am J Physiol Heart Circ Physiol 302:H402–H411. https://doi.org/10.1152/ajpheart.00653.2011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Zurlo F, Lillioja S, Esposito-Del Puente A et al (1990) Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am J Physiol Endocrinol Metab 259:E650–E657. https://doi.org/10.1152/ajpendo.1990.259.5.e650

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the subjects who agreed to participate to the. They thank the nursing staff at the Department of Public Health—A.A.S. n. 3 “Alto Friuli-Collinare-Medio Friuli” Gemona del Friuli—Udine (Italy), for their qualified assistance during the study. The study was supported by the University of Udine research funds.

Author information

Authors and Affiliations

Authors

Contributions

FV and SL conceived the overall study; all the authors contributed to design the research. FV, ADA, FDV, EC, BM and FF and conducted the experiments. FV, AD, JMS, BN, MC, FF, GB and AA analysed the data. FV wrote the manuscript with the help of AP, BM, MC, IM, FF, GB. SL, BG and IM who revised the manuscript. All the authors read and approved this manuscript.

Corresponding author

Correspondence to Filippo Vaccari.

Ethics declarations

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the author(s).

Additional information

Communicated by Philip D. Chilibeck.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vaccari, F., Passaro, A., D’Amuri, A. et al. Effects of 3-month high-intensity interval training vs. moderate endurance training and 4-month follow-up on fat metabolism, cardiorespiratory function and mitochondrial respiration in obese adults. Eur J Appl Physiol 120, 1787–1803 (2020). https://doi.org/10.1007/s00421-020-04409-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-020-04409-2

Keywords

  • Obesity
  • HIIT
  • Lipid oxidation
  • Mitochondrial respiration
  • Aerobic function