Skip to main content

Immediate and 24-h post-marathon cardiac troponin T is associated with relative exercise intensity

Abstract

Purpose

We aimed at exploring whether cardiopulmonary fitness, echocardiographic measures and relative exercise intensity were associated with high-sensitivity cardiac troponin T (hs-TNT) rise and normalization following a marathon.

Methods

Nighty-eight participants (83 men, 15 women; 38.72 ± 3.63 years) were subjected to echocardiographic assessment and a cardiopulmonary exercise test (CPET) before the race. hs-TNT was measured before, immediately after and at 24, 48, 96, 144 and 192 h post-race. Speed and mean heart rate (HR) during the race were relativized to CPET values: peak speed (%VVMAX), peak HR (HR%MAX), speed and HR at the second ventilatory threshold (HR%VT2 and %VVT2).

Results

Hs-TNT increased from pre- to post-race (5.74 ± 5.29 vs. 50.4 ± 57.04 ng/L; p < 0.001), seeing values above the Upper Reference Limit (URL) in 95% of the participants. At 24 h post-race, 39% of the runners still exceeded the URL (High hs-TNT group). hs-TNT rise was correlated with marathon speed %VVT2 (r = 0.22; p = 0.042), mean HR%VT2 (r = 0.30; p = 0.007), and mean HR%MAX (r = 0.32; p = 0.004). Moreover, the High hs-TNT group performed the marathon at a higher Speed %VVT2 (88.21 ± 6.53 vs. 83.49 ± 6.54%; p = 0.002) and Speed %VVMAX (72 ± 4.25 vs. 69.40 ± 5.53%; p = 0.009). hs-TNT showed no significant associations with cardiopulmonary fitness and echocardiographic measures, except for a slight correlation with left ventricular end systolic diameter (r = 0.26; p = 0.018).

Conclusion

Post-race hs-TNT was above the URL in barely all runners. Magnitude of hs-TNT rise was correlated with exercise mean HR; whereas, its normalization kept relationship with marathon relative speed.

This is a preview of subscription content, access via your institution.

Fig. 1

Data availability

Data from the Run, Recovery, Repeat, Always Healthy Project, to whom it belong results here presented, are stored at the Sports Service of the Jaume I University of Castellon. Applications for data sharing can be made.

Abbreviations

hs-TNT:

High-sensitive cardiac troponin T

CPET:

Cardiopulmonary exercise test

HR:

Heart rate

URL:

Upper reference limit

BMI:

Body mass index

VO2max:

Maximum oxygen uptake

RER:

Respiratory exchange ratio

VT2 :

Second ventilatory threshold

RVEDD:

Right ventricular end diastolic diameter

LVEDD:

Left ventricular end diastolic diameter

LVESD:

Left ventricular end systolic diameter

IVS:

Interventricular septum at the end of diastole

PW:

Posterior wall at the end of diastole

LVEF:

Left ventricular ejection fraction

ECLIA:

Electrochemiluminescence technology

LoB:

Limit of the blank

SD:

Standard deviation

References

  1. Baker P, Leckie T, Harrington D, Richardson A (2019) Exercise-induced cardiac troponin elevation: an update on the evidence, mechanism and implications. Int J Cardiol Heart Vasc 22:181–186. https://doi.org/10.1016/j.ijcha.2019.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bernat-Adell MD, Collado-Boira EJ, Moles-Julio P, Panizo-Gonzalez N, Martinez-Navarro I, Hernando-Fuster B, Hernando-Domingo C (2019) Recovery of inflammation, cardiac, and muscle damage biomarkers after running a marathon. J Strength Cond Res. https://doi.org/10.1519/JSC.0000000000003167

    Article  PubMed  Google Scholar 

  3. Bishop EN, Dang T, Morrell H, Estis J, Bishop JJ (2019) Effect of health and training on ultrasensitive cardiac troponin in marathon runners. J Appl Lab Med 3:775–787. https://doi.org/10.1373/jalm.2018.026153

    CAS  Article  PubMed  Google Scholar 

  4. Brzezinski RY, Milwidsky A, Shenhar-Tsarfaty S (2019) Exercise-induced cardiac troponin in the era of high sensitivity assays: what makes our heart sweat? Int J Cardiol 288:19–21. https://doi.org/10.1016/j.ijcard.2019.03.057

    Article  PubMed  Google Scholar 

  5. Dalla Vecchia L, Traversi E, Porta A, Lucini D, Pagani M (2014) On site assessment of cardiac function and neural regulation in amateur half marathon runners. Open heart 1:e000005. https://doi.org/10.1136/openhrt-2013-000005

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dalla Vecchia LA et al (2019) Can strenuous exercise harm the heart? Insights from a study of cardiovascular neural regulation in amateur triathletes. PLoS ONE 14:e0216567. https://doi.org/10.1371/journal.pone.0216567

    Article  PubMed  PubMed Central  Google Scholar 

  7. di Prampero PE, Atchou G, Bruckner JC, Moia C (1986) The energetics of endurance running. Eur J Appl Physiol 55:259–266

    Article  Google Scholar 

  8. Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37:247–248. https://doi.org/10.1152/jappl.1974.37.2.247

    CAS  Article  PubMed  Google Scholar 

  9. Donaldson JA, Wiles JD, Coleman DA, Papadakis M, Sharma R, O'Driscoll JM (2019) Left ventricular function and cardiac biomarker release-the influence of exercise intensity duration and mode: a systematic review and meta-analysis. Sports Med 49:1275–1289. https://doi.org/10.1007/s40279-019-01142-5

    CAS  Article  PubMed  Google Scholar 

  10. Eijsvogels TM, Hoogerwerf MD, Maessen MF, Seeger JP, George KP, Hopman MT, Thijssen DH (2015) Predictors of cardiac troponin release after a marathon. J Sci Med Sport 18:88–92. https://doi.org/10.1016/j.jsams.2013.12.002

    Article  PubMed  Google Scholar 

  11. Fortescue EB et al (2007) Cardiac troponin increases among runners in the Boston Marathon. Ann Emerg Med 49:137–143. https://doi.org/10.1016/j.annemergmed.2006.09.024

    Article  PubMed  PubMed Central  Google Scholar 

  12. Furlan R, Piazza S, Dell'Orto S, Gentile E, Cerutti S, Pagani M, Malliani A (1993) Early and late effects of exercise and athletic training on neural mechanisms controlling heart rate. Cardiovasc Res 27:482–488. https://doi.org/10.1093/cvr/27.3.482

    CAS  Article  PubMed  Google Scholar 

  13. Giannitsis E, Kurz K, Hallermayer K, Jarausch J, Jaffe AS, Katus HA (2010) Analytical validation of a high-sensitivity cardiac troponin T assay. Clin Chem 56:254–261. https://doi.org/10.1373/clinchem.2009.132654

    CAS  Article  PubMed  Google Scholar 

  14. Gresslien T, Agewall S (2016) Troponin and exercise. Int J Cardiol 221:609–621. https://doi.org/10.1016/j.ijcard.2016.06.243

    CAS  Article  PubMed  Google Scholar 

  15. Hernando C, Hernando C, Collado EJ, Panizo N, Martinez-Navarro I, Hernando B (2018) Establishing cut-points for physical activity classification using triaxial accelerometer in middle-aged recreational marathoners. PLoS ONE 13:e0202815. https://doi.org/10.1371/journal.pone.0202815

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Jassal DS, Moffat D, Krahn J, Ahmadie R, Fang T, Eschun G, Sharma S (2009) Cardiac injury markers in non-elite marathon runners. Int J Sports Med 30:75–79. https://doi.org/10.1055/s-0028-1104572

    CAS  Article  PubMed  Google Scholar 

  17. Kleiven O et al (2019) Race duration and blood pressure are major predictors of exercise-induced cardiac troponin elevation. Int J Cardiol 283:1–8. https://doi.org/10.1016/j.ijcard.2019.02.044

    Article  PubMed  Google Scholar 

  18. Kosowski M et al (2019) Cardiovascular stress biomarker assessment of middle-aged non-athlete marathon runners. Eur J Prev Cardiol 26:318–327. https://doi.org/10.1177/2047487318819198

    Article  PubMed  Google Scholar 

  19. Lucia A, Hoyos J, Chicharro JL (2000) The slow component of VO2 in professional cyclists. Br J Sports Med 34:367–374

    CAS  Article  Google Scholar 

  20. Manzi V et al (2009) Dose-response relationship of autonomic nervous system responses to individualized training impulse in marathon runners. Am J Physiol Heart Circ Physiol 296:H1733–1740. https://doi.org/10.1152/ajpheart.00054.2009

    CAS  Article  PubMed  Google Scholar 

  21. Martinez-Navarro I, Sanchez-Gomez JM, Collado-Boira EJ, Hernando B, Panizo N, Hernando C (2019) Cardiac Damage Biomarkers and Heart Rate Variability Following a 118-Km Mountain Race: Relationship with Performance and Recovery. J Sports Sci Med 18(4):615–622

    PubMed  PubMed Central  Google Scholar 

  22. Mehta R et al (2012) Post-exercise cardiac troponin release is related to exercise training history. Int J Sports Med 33:333–337. https://doi.org/10.1055/s-0031-1301322

    CAS  Article  PubMed  Google Scholar 

  23. Mingels A, Jacobs L, Michielsen E, Swaanenburg J, Wodzig W, van Dieijen-Visser M (2009) Reference population and marathon runner sera assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and I assays. Clin Chem 55:101–108. https://doi.org/10.1373/clinchem.2008.106427

    CAS  Article  PubMed  Google Scholar 

  24. Mitchell C et al (2019) Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American society of echocardiography. J Am Soc Echocardiogr 32:1–64. https://doi.org/10.1016/j.echo.2018.06.004

    Article  PubMed  Google Scholar 

  25. Neilan TG et al (2006) Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation 114:2325–2333. https://doi.org/10.1161/CIRCULATIONAHA.106.647461

    Article  PubMed  PubMed Central  Google Scholar 

  26. Paana T et al (2019) Cardiac troponin elevations in marathon runners. Role of coronary atherosclerosis and skeletal muscle injury. The MaraCat Study Int J Cardiol 295:25–28. https://doi.org/10.1016/j.ijcard.2019.08.019

    Article  PubMed  Google Scholar 

  27. Regwan S, Hulten EA, Martinho S, Slim J, Villines TC, Mitchell J, Slim AM (2010) Marathon running as a cause of troponin elevation: a systematic review and meta-analysis. J Interv Cardiol 23:443–450. https://doi.org/10.1111/j.1540-8183.2010.00575.x

    Article  PubMed  Google Scholar 

  28. Richardson AJ, Leckie T, Watkins ER, Fitzpatrick D, Galloway R, Grimaldi R, Baker P (2018) Post marathon cardiac troponin T is associated with relative exercise intensity. J Sci Med Sport 21:880–884. https://doi.org/10.1016/j.jsams.2018.02.005

    CAS  Article  PubMed  Google Scholar 

  29. Rietjens GJ, Kuipers H, Kester AD, Keizer HA (2001) Validation of a computerized metabolic measurement system (Oxycon-Pro) during low and high intensity exercise. Int J Sports Med 22:291–294. https://doi.org/10.1055/s-2001-14342

    CAS  Article  PubMed  Google Scholar 

  30. Roca E et al (2017) The dynamics of cardiovascular biomarkers in non-elite marathon runners. J Cardiovasc Transl Res 10:206–208. https://doi.org/10.1007/s12265-017-9744-2

    Article  PubMed  Google Scholar 

  31. Scherr J et al (2011) 72-h kinetics of high-sensitive troponin T and inflammatory markers after marathon. Med Sci Sports Exerc 43:1819–1827

    CAS  Article  Google Scholar 

  32. Shave R et al (2007) Exercise-induced cardiac troponin T release: a meta-analysis. Med Sci Sports Exerc 39:2099–2106. https://doi.org/10.1249/mss.0b013e318153ff78

    CAS  Article  PubMed  Google Scholar 

  33. Stewart GM, Kavanagh JJ, Koerbin G, Simmonds MJ, Sabapathy S (2014) Cardiac electrical conduction, autonomic activity and biomarker release during recovery from prolonged strenuous exercise in trained male cyclists. Eur J Appl Physiol 114:1–10. https://doi.org/10.1007/s00421-013-2742-4

    CAS  Article  PubMed  Google Scholar 

  34. Thomas J, Nelson J, Silverman S (2005) Research methods in physical activity. Human kinetics, Champaign

    Google Scholar 

  35. Trivax JE et al (2010) Acute cardiac effects of marathon running. J Appl Physiol (1985) 108:1148–1153. https://doi.org/10.1152/japplphysiol.01151.2009

    CAS  Article  Google Scholar 

  36. Vilela EM, Bastos JC, Rodrigues RP, Nunes JP (2014) High-sensitivity troponin after running–a systematic review. Neth J Med 72:5–9

    CAS  PubMed  Google Scholar 

  37. Vroemen WHM, Mezger STP, Masotti S, Clerico A, Bekers O, de Boer D, Mingels A (2019) Cardiac troponin T: only small molecules in recreational runners after marathon completion. J Appl Lab Med 3:909–911. https://doi.org/10.1373/jalm.2018.027144

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Current research could be carried out, thanks to the collaboration of Fundacion Trinidad Alfonso, Vithas-Nisa Hospitals group and Sociedad Deportiva Correcaminos. Authors are also grateful to all the staff involved in the organization of the Valencia Fundacion Trinidad Alfonso EDP 2016 Marathon and all marathoners and volunteers participating in this study.

Funding

Fundacion Trinidad Alfonso and Vithas-Nisa Hospitals group.

Author information

Affiliations

Authors

Contributions

Conceived and designed the experiments: IMN JSG DS EC BH NP CH. Performed the experiments: IMN JSG DS EC BH NP CH. Analyzed the data: IMN JSG DS CH. Wrote the manuscript: IMN. All authors have read and approved the final version of the manuscript, and agree with the order of presentation of the authors.

Corresponding author

Correspondence to Ignacio Martínez-Navarro.

Ethics declarations

Conflict of interest

Northing to declare.

Ethical standards

Research Ethics Committee of the Jaume I University of Castellon (Expedient number: DOGV 7993, 6/03/2017).

Informed consent

All individuals included in the current study were fully informed and gave their written consent to participate and for the data to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Massimo Pagani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martínez-Navarro, I., Sánchez-Gómez, J., Sanmiguel, D. et al. Immediate and 24-h post-marathon cardiac troponin T is associated with relative exercise intensity. Eur J Appl Physiol 120, 1723–1731 (2020). https://doi.org/10.1007/s00421-020-04403-8

Download citation

Keywords

  • Cardiopulmonary fitness
  • Cardiac stress
  • Running
  • Echocardiography
  • Heart rate