Effects of recreational scuba diving on erythropoiesis–“normobaric oxygen paradox” or “plasma volume regulation” as a trigger for erythropoietin?

Abstract

Purpose

Previous studies have shown an increase in erythrocyte lipid peroxidation and a decrease in red blood cell (RBC) count, hemoglobin, and hematocrit after only one recreational scuba diving session. The aim of this study was to examine the effect of repetitive scuba diving on RBC parameters and erythropoiesis.

Methods

Divers (N = 14) conducted one dive per week over 5 weeks at a depth of 20–30 m for 30 min. For measuring RBC parameters, erythropoietin, iron, and ferritin, blood samples were collected before and after the first, third, and fifth dive.

Results

Between pre- and post-dive results, a statistically significant increase in RBC count, hemoglobin, hematocrit, mean corpuscular volume (MCV), RBC distribution width (RDW), iron, and ferritin was observed. Analysis of the results between the first, third, and fifth dive showed that the erythropoietin increase at the third (pre-dive p = 0.009; post-dive p = 0.004) and fifth dive (pre-dive p < 0.001; post-dive p = 0.003) was not accompanied by changes in RBC count, hemoglobin, iron, and ferritin. In parallel, a continuous increase in hematocrit, MCV, and RDW was observed, whereas mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) decreased.

Conclusions

Changes in RBC indices and EPO elevation indicate that the occasional switch from hyperoxia to normoxia or mechanisms for plasma volume regulation may be a step in the maintenance of erythropoiesis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

BMI:

Body mass index

EPO:

Erythropoietin

IQR:

Interquartile range

MCH:

Mean corpuscular hemoglobin

MCHC:

Mean corpuscular hemoglobin concentration

MCV:

Mean corpuscular volume

RBC:

Red blood cell

RDW:

RBC distribution width

SCUBA:

Self-contained breathing apparatus

References

  1. Adil GF, Jasim NA, Narjis AHA (2006) Haematological changes among divers. Med Jour Basrah Uni 1–2:60–65

    Google Scholar 

  2. Balestra C, Germonpré P, Poortmans J, Marroni A, Schiettecatte J, Collard JF, Snoeck T (2004) Erythropoietin production can be enhanced by normobaric oxygen breathing in healthy humans. Undersea Hyperb Med 31:53–57

    CAS  PubMed  Google Scholar 

  3. Balestra C, Germonpré P, Poortmans JR, Marroni A (2006) Serum erythropoietin levels in healthy humans after a short period of normobaric and hyperbaric oxygen breathing: the "normobaric oxygen paradox". J Appl Physiol 100:512–518

    CAS  PubMed  Article  Google Scholar 

  4. Balestra C, Germonpre P (2011) Increasing EPO using the normobaric oxygen paradox: a 'not so simple' task. Acta Physiol (Oxf) 203:287–288

    CAS  Article  Google Scholar 

  5. Balestra C, Kot J, Efrati S, Guerrero F, Blatteau JE, Besnard S (2018) Editorial: extreme environments in movement science and sport psychology. Front Psychol 9:2391

    PubMed  PubMed Central  Article  Google Scholar 

  6. Balestra C, Germonpre P, Rocco M, Biancofiore G, Kot J (2019) Diving physiopathology: the end of certainties? Food for thought. Minerva Anestesiol 85:1129–1137

    PubMed  Article  Google Scholar 

  7. Bilopavlovic N, Marinovic J, Ljubkovic M, Obad A, Zanchi J, Pollock NW, Denoble P, Dujic Z (2013) Effect of repetitive SCUBA diving on humoral markers of endothelial and central nervous system integrity. Eur J Appl Physiol 113:1737–1743

    PubMed  Article  Google Scholar 

  8. Bosman GJ, Willekens FL, Werre JM (2005) Erythrocyte aging: a more than superficial resemblance to apoptosis? Cell Physiol Biochem 16:1–8

    CAS  PubMed  Article  Google Scholar 

  9. Brubakk AO, Ross JA, Thom SR (2014) Saturation diving; physiology and pathophysiology. Compr Physiol 4:1229–1272

    PubMed  Article  Google Scholar 

  10. Ciccarella Y, Balestra C, Valsamis J, Van der Linden P (2011) Increase in endogenous erythropoietin synthesis through the normobaric oxygen paradox in cardiac surgery patients. Br J Anaesth 106:752–753

    CAS  PubMed  Article  Google Scholar 

  11. Cohen J (1992) Statistical power analysis. Curr Dir Psychol Sci 1:98–101

    Article  Google Scholar 

  12. DAN (2017) Saturation Diving. Divers alert network. https://www.alertdiver.com/Saturation_Diving. Accessed 25 Dec 2019

  13. De Bels D, Theunissen S, Devriendt J, Germonpre P, Lafere P, Valsamis J, Snoeck T, Meeus P, Balestra C (2012) The 'normobaric oxygen paradox': does it increase haemoglobin? Diving Hyperb Med 42:67–71

    PubMed  Google Scholar 

  14. Debevec T, Keramidas ME, Norman B, Gustafsson T, Eiken O, Mekjavic IB (2012) Acute short-term hyperoxia followed by mild hypoxia does not increase EPO production: resolving the "normobaric oxygen paradox". Eur J Appl Physiol 112:1059–1065

    CAS  PubMed  Article  Google Scholar 

  15. Fritz CO, Morris PE, Richler JJ (2012) Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen 141:2–18

    PubMed  Article  Google Scholar 

  16. Gossmann J, Burkhardt R, Harder S, Lenz T, Sedlmeyer A, Klinkhardt U, Geiger H, Scheuermann EH (2001) Angiotensin II infusion increases plasma erythropoietin levels via an angiotensin II type 1 receptor-dependent pathway. Kidney Int 60:83–86

    CAS  PubMed  Article  Google Scholar 

  17. Hofsø D, Ulvik RJ, Segadal K, Hope A, Thorsen E (2005) Changes in erythropoietin and haemoglobin concentrations in response to saturation diving. Eur J Appl Physiol 95:191–196

    PubMed  Article  CAS  Google Scholar 

  18. Jain KK (2017a) Physical, physiological, and biochemical aspects of hyperbaric oxygenation. In: Jain KK (ed) Textbook of hyperbaric medicine. Springer, Cham, pp 11–22

    Chapter  Google Scholar 

  19. Jain KK (2017b) Effects of Diving and High Pressure on the Human Body. In: Jain KK (ed) Textbook of hyperbaric medicine. Springer, Cham, pp 23–31

    Chapter  Google Scholar 

  20. Jelkmann W (2011) Regulation of erythropoietin production. J Physiol 589:1251–1258

    CAS  PubMed  Article  Google Scholar 

  21. Khalife M, Wiams K, Ben Aziz M, Balestra C, Sosnowski M (2018) Effect of induced relative hypoxia on reticulocyte count in oncologycal abdominal surgery: a single-centre, controlled, randomized pilot study. Int J Sci Res 7:12–16

    Google Scholar 

  22. Keramidas ME, Kounalakis SN, Debevec T, Norman B, Gustafsson T, Eiken O, Mekjavic IB (2011) Acute normobaric hyperoxia transiently attenuates plasma erythropoietin concentration in healthy males: evidence against the “normobaric oxygen paradox” theory. Acta Physiol (Oxf) 202:91–98

    CAS  Article  Google Scholar 

  23. Keramidas ME, Norman B, Gustafsson T, Eiken O, Mekjavic IB (2012) Longterm intermittent hyperoxic exposures do not enhance erythropoiesis. Eur J Clin Invest 42:260–265

    PubMed  Article  CAS  Google Scholar 

  24. Kiboub FZ, Møllerløkken A, Hjelde A, Flatberg A, Loennechen Ø, Eftedal I (2018a) Blood gene expression and vascular function biomarkers in professional saturation diving. Front Physiol 9:937

    PubMed  PubMed Central  Article  Google Scholar 

  25. Kiboub FZ, Balestra C, Loennechen Ø, Eftedal I (2018b) Hemoglobin and erythropoietin after commercial saturation diving. Front Physiol 9:1176

    PubMed  PubMed Central  Article  Google Scholar 

  26. Kirsch KA, Schlemmer M, De Santo NG, Cirillo M, Perna A, Gunga HC (2005) Erythropoietin as a volume-regulating hormone: an integrated view. Semin Nephrol 25:388–391

    CAS  PubMed  Article  Google Scholar 

  27. Lafere P, Schubert T, De Bels D, Germonpre P, Balestra C (2013) Can the normobaric oxygen paradox (NOP) increase reticulocyte count after traumatic hip surgery? J Clin Anesth 25:129–134

    PubMed  Article  Google Scholar 

  28. Lippi G, Sanchis-Gomar F (2019) Epidemiological, biological and clinical update on exercise-induced hemolysis. Ann Transl Med 7:270

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Momeni M, De Kock M, Devuyst O, Liistro G (2011) Effect of N-acetyl-cysteine and hyperoxia on erythropoietin production. Eur J Appl Physiol 111:2681–2686

    CAS  PubMed  Article  Google Scholar 

  30. Mutzbauer TS, Schneider M, Neubauer B, Weiss M, Tetzlaff K (2015) Antioxidants may attenuate plasma erythropoietin decline after hyperbaric oxygen diving. Int J Sports Med 36:1035–1040

    CAS  PubMed  Article  Google Scholar 

  31. Perovic A, Unic A, Dumic J (2014) Recreational scuba diving: negative or positive effects of oxidative and cardiovascular stress? Biochem Med 24:235–247

    CAS  Article  Google Scholar 

  32. Perovic A, Nikolac N, Braticevic MN, Milcic A, Sobocanec S, Balog T, Dabelic S, Dumic J (2017) Does recreational scuba diving have clinically significant effect on routine haematological parameters? Biochem Med 27:325–331

    Article  Google Scholar 

  33. Perović A, Sobočanec S, Dabelić S, Balog T, Dumić J (2018) Effect of scuba diving on the oxidant/antioxidant status, SIRT1 and SIRT3 expression in recreational divers after a winter nondive period. Free Radic Res 52:188–197

    PubMed  Article  CAS  Google Scholar 

  34. Revelli L, Vagnoni S, D'Amore A, Di Stasio E, Lombardi CP, Storti G, Proietti R, Balestra C, Ricerca BM (2013) EPO modulation in a 14-days undersea scuba dive. Int J Sports Med 34:856–860

    CAS  PubMed  Article  Google Scholar 

  35. Rey F, Balsari A, Giallongo T, Ottolenghi S, Di Giulio AM, Samaja M, Carelli S (2019) Erythropoietin as a neuroprotective molecule: an overview of its therapeutic potential in neurodegenerative diseases. ASN Neuro 11:1759091419871420

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Ricos C, Alvarez V, Cava F, Garcia-Lario JV, Hernandez A, Jimenez CV, Minchinela J, Perich C, Simon M (1999) Current databases on biologic variation: pros, cons and progress. Scand J Clin Lab Invest 59:491–500. The 2014 update. https://www.westgard.com/biodatabase1.htm. Accessed 14 April 2020

  37. Roberts D, Smith DJ, Donnelly S, Simard S (2000) Plasma-volume contraction and exercise-induced hypoxaemia modulate erythropoietin production in healthy humans. Clin Sci (Lond) 98:39–45

    CAS  Article  Google Scholar 

  38. Salvagno GL, Sanchis-Gomar F, Picanza A, Lippi G (2015) Red blood cell distribution width: A simple parameter with multiple clinical applications. Crit Rev Clin Lab Sci 52:86–105

    PubMed  Article  Google Scholar 

  39. Santhanam AV, d'Uscio LV, Katusic ZS (2010) Cardiovascular effects of erythropoietin an update. Adv Pharmacol 60:257–285

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Sičaja M, Pehar M, Đerek L, Starčević B, Vuletić V, Romić Ž, Božikov V (2013) Red blood cell distribution width as a prognostic marker of mortality in patients on chronic dialysis: a single center, prospective longitudinal study. Croat Med J 54:25–32

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. Thorsen E, Haave H, Hofsø D, Ulvik RJ (2001) Exposure to hyperoxia in diving and hyperbaric medicine–effects on blood cell counts and serum ferritin. Undersea Hyperb Med 28:57–62

    CAS  PubMed  Google Scholar 

  42. Tomczak M, Tomczak E (2014) The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci 1:19–25

    Google Scholar 

  43. Törpel A, Peter B, Hamacher D, Schega L (2019) Dose-response relationship of intermittent normobaric hypoxia to stimulate erythropoietin in the context of health promotion in young and old people. Eur J Appl Physiol 119:1065–1074

    PubMed  Article  Google Scholar 

  44. Viscor G, Torrella JR, Corral L, Ricart A, Javierre C, Pages T, Ventura JL (2018) Physiological and biological responses to short-term intermittent hypobaric hypoxia exposure: from sports and mountain medicine to new biomedical applications. Front Physiol 9:814

    PubMed  PubMed Central  Article  Google Scholar 

  45. Vlahakos DV, Marathias KP, Madias NE (2010) The role of the renin-angiotensin system in the regulation of erythropoiesis. Am J Kidney Dis 56:558–565

    CAS  PubMed  Article  Google Scholar 

  46. Zwart SR, Kala G, Smith SM (2009) Body iron stores and oxidative damage in humans increased during and after a 10- to 12-day undersea dive. J Nutr 139:90–95

    CAS  PubMed  Article  Google Scholar 

  47. Žarak M, Perović A, Dobrović I, Goreta SŠ, Dumić J (2019) Galectin-3 and cardiovascular biomarkers reflect adaptation response to scuba diving. Int J Sports Med [Epub ahead of print]

Download references

Acknowledgements

The authors would like to thank the divers for participating in this study and other members of diver clubs for their support.

Author information

Affiliations

Authors

Contributions

JD, AP, and MŽ conceived and designed research. AP and MNJB conducted experiments and performed analysis. AP analyzed data and wrote the manuscript. All authors reviewed and approved final version of the manuscript.

Corresponding author

Correspondence to Antonija Perović.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Guido Ferrett.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perović, A., Žarak, M., Njire Bratičević, M. et al. Effects of recreational scuba diving on erythropoiesis–“normobaric oxygen paradox” or “plasma volume regulation” as a trigger for erythropoietin?. Eur J Appl Physiol 120, 1689–1697 (2020). https://doi.org/10.1007/s00421-020-04395-5

Download citation

Keywords

  • Scuba diving
  • Hyperoxia
  • Erythropoietin
  • Red blood cells
  • Erythropoiesis