Skip to main content
Log in

Acute and chronic neuromuscular electrical stimulation and postural balance: a review

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Electro-induced (EI) muscle actions are largely used in healthy subjects to improve motor performance, in frail/older subjects to limit sarcopenia and mobility loss, and in pathological subjects to restore functional abilities after injury and/or surgical operation. Their effects on motor output (e.g., muscle strength and power, and motor performance) are relatively well known, but their effects on postural balance are not. However, postural balance turns out to be a determining factor for motor skills in terms of motor performance and prevention of falls (especially in older/frail and pathological subjects). Hence, this review addresses the acute and chronic effects of EI muscle actions on postural balance, comparing them to the effects of voluntary (VOL) muscle actions.

Method

Narrative review.

Result

In acute, fatigue-generating application, EI muscle actions impair postural balance but less than VOL muscle actions. In chronic application, EI muscle actions induce beneficial effects on postural balance in pathological and aged (or frail) subjects. However, they have no or very little impact on healthy and young subjects. In aged (and probably pathological) subjects, EI muscle actions alone or superimposed onto voluntary contractions (EI + VOL) are less efficient than VOL muscle actions in improving postural balance.

Conclusion

In practice, as part of populations too frail/fragile or unable (sarcopenic or pathological persons) to regularly undertake VOL motor tasks required to efficiently struggle against the loss of mobility and the risk of fall, the EI muscle actions turn out to be particularly relevant to implement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

COM:

Centre of body mass

COP:

Centre of foot pressure

EI:

Electro-induced (muscle actions)

EI + VOL:

EI superimposed onto VOL (muscle actions)

EMG:

Electromyographic

MVC:

Maximal voluntary contraction

VOL:

Voluntary (muscle actions)

References

  • Alptekin K, Karan A, Dıracoglu D, Yildiz A, Baskent A, Eskiyurt N (2016) Investigating the effectiveness of postural muscle electrostimulation and static posturography feedback exercises in elders with balance disorder. J Back Musculoskelet Rehabil 29:151–159

    PubMed  Google Scholar 

  • Amiridis I, Arabatzi F, Violaris P, Stavropoulos E, Hatzitaki V (2005) Static balance improvement in elderly after dorsiflexors electrostimulation training. Eur J Appl Physiol 94:424–433

    PubMed  Google Scholar 

  • Bergquist AJ, Clair JM, Lagerquist O, Mang CS, Okuma Y, Collins DF (2011) Neuromuscular electrical stimulation: implications of the electrically evoked sensory volley. Eur J Appl Physiol 111:2409–2226

    CAS  PubMed  Google Scholar 

  • Biro A, Griffin L, Cafarelli E (2007) Reflex gain of muscle spindle pathways during fatigue. Exp Brain Res 177:157–166

    CAS  PubMed  Google Scholar 

  • Bizid R, Jully JL, Gonzalez G, François Y, Dupui P, Paillard T (2009) Effects of fatigue induced by neuromuscular electrical stimulation on postural control. J Sci Med Sport 12:60–66

    PubMed  Google Scholar 

  • Borel L, Alescio-Lautier B (2014) Posture and cognition in the elderly: interaction and contribution to the rehabilitation strategies. Clin Neurophysiol 44:95–110

    CAS  Google Scholar 

  • Carson RG, Buick AR (2019) Neuromuscular electrical stimulation-promoted plasticity of the human brain. J Physiol. https://doi.org/10.1113/JP278298Epub ahead of print

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaubet V, Paillard T (2012) Effects of unilateral knee extensor muscle fatigue induced by stimulated and voluntary contractions on postural control during bipedal stance. Neurophysiol Clin 42:377–383

    CAS  PubMed  Google Scholar 

  • Chaubet V, Maitre J, Cormery B, Paillard T (2012) Stimulated and voluntary fatiguing contractions of quadriceps femoris similarly disturb postural control in the bipedal stance. Eur J Appl Physiol 112:1881–1887

    PubMed  Google Scholar 

  • Coffey VG, Hawley J (2007) The molecular bases of training adaptation. Sports Med 37:737–763

    PubMed  Google Scholar 

  • Chaubet V, Cormery B, Maitre J, Paillard T (2013) Stimulated contractions delay and prolong central fatigue compared with voluntary contractions in men. J Strength Cond Res 27:1378–1383

    PubMed  Google Scholar 

  • Collins D (2007) Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation. Exerc Sport Sci Rev 35:102–109

    PubMed  Google Scholar 

  • Debove L, Bru N, Couderc M, Noé F, Paillard T (2017) Physical activity limits the effects of age and Alzheimer's disease on postural control. Neurophysiol Clin 47:301–304

    PubMed  Google Scholar 

  • Dickstein R, Laufer Y, Katz M (2006) TENS to the posterior aspect of the legs decreases postural sway during stance. Neurosci Lett 393:51–55

    CAS  PubMed  Google Scholar 

  • Duclos C, Roll R, Kavounoudias A, Roll JP (2004) Long-lasting body leanings following neck muscle isometric contractions. Exp Brain Res 158:58–66

    CAS  PubMed  Google Scholar 

  • Euzet JP, Gahery Y (1998) Evaluation du sens de la position: Influence de la pratique physique et de l’âge. Rev STAPS 46(47):99–109

    Google Scholar 

  • Fauler M, Jurkat-Rott K, Lehmann-Horn F (2012) Membrane excitability and excitation-contraction uncoupling in muscle fatigue. Neuromuscul Disord 22:162–167

    Google Scholar 

  • Fitts RH (2008) The cross-bridge cycle and skeletal muscle fatigue. J Appl Physiol 104:551–558

    CAS  PubMed  Google Scholar 

  • Gravelle DC, Laughton CA, Dhruv N, Katdare KD, Niemi JB, Lipsitz LA, Collins JJ (2002) Noise-enhanced balance control in older adults. NeuroReport 13:1853–1856

    PubMed  Google Scholar 

  • Gregory CM, Bickel CS (2005) Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 85:358–364

    PubMed  Google Scholar 

  • Hachard B, Noe F, Catherine A, Zeronian Z, Paillard T (2019) Voluntary and electrically-induced muscle fatigue differently affect postural balance mechanisms in unipedal stance. Exp Brain Res 237:313–323

    CAS  PubMed  Google Scholar 

  • Hainaut K, Duchateau J (1992) Neuromuscular electrical stimulation and voluntary exercise. Sports Med 14:100–113

    CAS  PubMed  Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–580

    CAS  PubMed  Google Scholar 

  • Huffenus AF, Forestier N (2006) Effects of fatigue of elbow extensor muscles voluntarily induced and induced by electromyostimulation on multi-joint movement organization. Neurosci Lett 403:109–113

    CAS  PubMed  Google Scholar 

  • Ijkema-Paassen J, Gramsbergen A (2005) Development of postural muscles and their innervation. Neural Plast 12:141–151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones S, Man WD, Gao W, Higginson IJ, Wilcock A, Maddocks M (2016) Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease. Cochrane Database Syst Rev 10:CD009419

    PubMed  Google Scholar 

  • Kadri MA, Noé F, Nouar MB, Paillard T (2017) Effects of training programs based on ipsilateral voluntary and stimulated contractions on muscle strength and monopedal postural control of the contralateral limb. Eur J Appl Physiol 117:1799–1806

    PubMed  Google Scholar 

  • Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG (2002) Modulation of human corticomotor excitability by somatosensory input. J Physiol 540:623–633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang MK, Nam BR, Lee YS, Cheon SH (2013) Relationship between the application of tens to the lower limbs and balance of healthy subjects. J Phys Ther Sci 25:1079–1081

    PubMed  PubMed Central  Google Scholar 

  • Kimura T, Kouzaki M (2013) Electrical noise to a knee joint stabilizes quiet bipedal stance. Gait Posture 37:634–636

    PubMed  Google Scholar 

  • Lake DA (1992) Neuromuscular electrical stimulation. An overview and its application in the treatment of sports injuries. Sports Med 13:320–336

    CAS  PubMed  Google Scholar 

  • Laufer Y, Dickstein R (2007) TENS to the lateral aspect of the knees during stance attenuates postural sway in young adults. ScientificWorldJournal 7:1904–1911

    PubMed  PubMed Central  Google Scholar 

  • Lexell J, Henriksson-Larsen K, Sjostrom M (1983) Distribution of different fibre types in human skeletal muscles. 2. A study of cross-sections of whole m. vastus lateralis. Acta Physiol Scand 117:115–122

    CAS  PubMed  Google Scholar 

  • Magalhães FH, Kohn AF (2014) Effectiveness of electrical noise in reducing postural sway: a comparison between imperceptible stimulation applied to the anterior and to the posterior leg muscles. Eur J Appl Physiol 114:1129–1141

    PubMed  Google Scholar 

  • Mangine GT, Hoffman JR, Wang R, Gonzalez AM, Townsend JR, Wells AJ, Jajtner AR, Beyer KS, Boone CH, Miramonti AA, LaMonica MB, Fukuda DH, Ratamess NA, Stout JR (2016) Resistance training intensity and volume affect changes in rate of force development in resistance-trained men. Eur J Appl Physiol 116:2367–2374

    PubMed  Google Scholar 

  • McComas AJ, Fawcett PR, Campbell MJ, Sica RE (1971) Electrophysiological estimation of the number of motor units within a human muscle. J Neurol Neurosurg Psychiatry 34:121–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKay D, Brooker R, Giacomin P, Ridding M, Miles T (2002) Time course of induction of increased human motor cortex excitability by nerve stimulation. NeuroReport 13:1271–1273

    PubMed  Google Scholar 

  • Mekki M, Paillard T, Sahli S, Tabka Z, Trabelsi Y (2019) Effect of adding neuromuscular electrical stimulation training to pulmonary rehabilitation in patients with chronic obstructive pulmonary disease: randomized clinical trial. Clin Rehabil 33:195–206

    PubMed  Google Scholar 

  • Mignardot JB, Deschamps T, Le Goff CG, Roumier FX, Duclay J, Martin A, Sixt M, Pousson M, Cornu C (2015) Neuromuscular electrical stimulation leads to physiological gains enhancing postural balance in the pre-frail elderly. Physiol Rep 3(7):e12471

    PubMed  PubMed Central  Google Scholar 

  • Monjo F, Forestier N (2015) Electrically-induced muscle fatigue affects feedforward mechanisms of control. Clin Neurophysiol 126:1607–1616

    CAS  PubMed  Google Scholar 

  • Nejc S, Loefler S, Cvecka J, Sedliak M, Kern H (2013) Strength training in elderly people improves static balance: a randomized controlled trial. Eur J Transl Myol Basic Appl Myol 23:85–89

    Google Scholar 

  • Paillard T (2018) Muscle plasticity of aged subjects in response to electrical stimulation training and inversion and/or limitation of the sarcopenic process. Ageing Res Rev 46:1–13

    PubMed  Google Scholar 

  • Paillard T (2017a) Plasticity of the postural function to sport and/or motor experience. Neurosci Biobehav Rev 72:129–152

    PubMed  Google Scholar 

  • Paillard T (2017b) Relationship between muscle function, muscle typology and postural performance according to different postural conditions in young and older adults. Front Physiol 8:585

    PubMed  PubMed Central  Google Scholar 

  • Paillard T (2015) Complexity of the effects of the electrically-induced muscle fatigue on motor control. Clin Neurophysiol 126:1464–1465

    PubMed  Google Scholar 

  • Paillard T, Noé F (2015) Techniques and methods for testing the postural function in healthy and pathological subjects. Biomed Res. https://doi.org/10.1155/2015/891390

    Article  Google Scholar 

  • Paillard T, Chaubet V, Maitre J, Dumitrescu M, Borel L (2010a) Disturbance of contralateral unipedal postural balance after stimulated and voluntary contractions of the ipsilateral limb. Neurosci Res 68:301–306

    PubMed  Google Scholar 

  • Paillard T, Maitre J, Chaubet V, Borel L (2010b) Stimulated and voluntary fatiguing contractions of quadriceps femoris differently disturb postural balance. Neurosci Lett 477:48–51

    CAS  PubMed  Google Scholar 

  • Paillard T, Margnes E, Maitre J, Chaubet V, François Y, Jully JL, Gonzalez G, Borel L (2010c) Electrical stimulation superimposed onto voluntary muscular contraction reduces deterioration of both postural balance and quadriceps femoris muscle strength. Neuroscience 165:1471–1475

    CAS  PubMed  Google Scholar 

  • Paillard T (2012a) Effects of general and local fatigue on postural balance: a review. Neurosci Biobehav Rev 36:162–176

    PubMed  Google Scholar 

  • Paillard T (2012b) Electrical stimulation superimposed on voluntary training can limit sensory integration in neural adaptations. J Mot Behav 44:267–268

    PubMed  Google Scholar 

  • Paillard T (2008) Combined applications of neuromuscular electrical stimulation and voluntary muscular contractions. Sports Med 38:161–177

    PubMed  Google Scholar 

  • Paillard T, Lizin C, Rousseau M, Cebella M (2014) Time to task failure influences the postural alteration more than the extent of muscles fatigued. Gait Posture 39:540–546

    PubMed  Google Scholar 

  • Paillard T, Lafont C, Pérès C, Costes-salon MC, Soulat JM, Montoya DP (2005a) Is electrical stimulation with voluntary muscle contraction exercice? Of physiologic interest in aging women? Ann Readapt Med Phys 48:20–28

    CAS  PubMed  Google Scholar 

  • Paillard T, Lafont C, Soulat JM, Montoya R, Costes-Salon MC, Dupui P (2005b) Short-term effects of electrical stimulation superimposed on muscular voluntary contraction in postural balance in elderly women. J Strength Cond Res 19:640–646

    PubMed  Google Scholar 

  • Paillard T, Noé F, Passelergue P, Dupui P (2005c) Electrical stimulation superimposed onto voluntary muscular contraction. Sports Med 35:951–966

    PubMed  Google Scholar 

  • Park M, Seok H, Kim SH, Noh K, Lee SY (2018) Comparison between neuromuscular electrical stimulation to abdominal and back muscles on postural balance in post-stroke hemiplegic patients. Ann Rehabil Med 42:652–659

    PubMed  PubMed Central  Google Scholar 

  • Pline KM, Madigan ML, Nussbaum MA (2006) Influence of fatigue time and level on increases in postural sway. Ergonomics 49:1639–1648

    PubMed  Google Scholar 

  • Ponce A, Fouque F, Cahouët V, Martin A (2007) Effects of plantar flexor muscle fatigue induced by electromyostimulation on postural coordination. Neurosci Lett 414:16–20

    CAS  PubMed  Google Scholar 

  • Rothwell JC (2009) The fatigued spinal cord. J Physiol 587:5517–5518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rotto DM, Kaufman MP (1988) Effect of metabolic products of muscular contraction on discharge of group III and IV afferents. J Appl Physiol 64:2306–2313

    CAS  PubMed  Google Scholar 

  • Severini G, Delahunt E (2018) Effect of noise stimulation below and above sensory threshold on postural sway during a mildly challenging balance task. Gait Posture 63:27–32

    PubMed  Google Scholar 

  • Sirousi M, Akbari M, Teymuri Z, Akbari A (2018) The effect of voluntary and electrically stimulated quadriceps muscle fatigue on postural control. Phys Treatments 7:225–232

    Google Scholar 

  • Sogaard K, Gandevia SC, Todd G, Petersen NT, Taylor JL (2006) The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles. J Physiol 573:511–523

    PubMed  PubMed Central  Google Scholar 

  • Taylor JL, Petersen NT, Butler JE, Gandevia SC (2002) Corticospinal transmission after voluntary contractions. Adv Exp Med Biol 508:435–441

    PubMed  Google Scholar 

  • Taylor JL, Todd G, Gandevia SC (2006) Evidence for a supraspinal contribution to human muscle fatigue. Clin Exp Pharmacol Physiol 33:400–405

    CAS  PubMed  Google Scholar 

  • Thomaz SR, Ciprianon G Jr, Formiga MF, Fachin-Martins E, Cipriano GFB, Martins WR, Cahalin LP (2019) Effect of electrical stimulation on muscle atrophy and spasticity in patients with spinal cord injury—a systematic review with meta-analysis. Spinal Cord 57:258–266

    PubMed  Google Scholar 

  • Tok F, Aydemir K, Peker F, Safaz I, Taşkaynatan MA, Ozgül A (2011) The effects of electrical stimulation combined with continuous passive motion versus isometric exercise on symptoms, functional capacity, quality of life and balance in knee osteoarthritis: randomized clinical trial. Rheumatol Int 31:177–181

    PubMed  Google Scholar 

  • Vanderthommen M, Duchateau J (2007) Electrical stimulation as a modality to improve performance of the neuromuscular system. Exerc Sport Sci Rev 35:180–185

    PubMed  Google Scholar 

  • Vanderthommen M, Duteil S, Wary C, Raynaud JS, Leroy-Willig A, Crielaard JM, Carlier PG (2003) A comparison of voluntary and electrically induced contractions by interleaved 1H and 31P-NMRS in humans. J Appl Physiol 94:1012–1024

    CAS  PubMed  Google Scholar 

  • Vedel JP, Roll JP (1983) Muscle spindle contribution to the coding of motor activities in man. Exp Brain Res Suppl 7:253–265

    Google Scholar 

  • Veldman MP, Maffiuletti NA, Hallett M, Zijdewind I, Hortobágyi T (2014) Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans. Neurosci Biobehav Rev 47:22–35

    CAS  PubMed  Google Scholar 

  • Woo MT, Davids K, Liukkonen J, Orth D, Chow JY, Jaakkola T (2017) Effects of different lower limb sensory stimulation strategies on postural regulation—Aa systematic review and meta-analysis. PLoS ONE 12:e0174522

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Paillard.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Communicated by Michael Lindinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paillard, T. Acute and chronic neuromuscular electrical stimulation and postural balance: a review. Eur J Appl Physiol 120, 1475–1488 (2020). https://doi.org/10.1007/s00421-020-04383-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-020-04383-9

Keywords

Navigation