Biomechanics of handcycling propulsion in a 30-min continuous load test at lactate threshold: Kinetics, kinematics, and muscular activity in able-bodied participants

Abstract

Purpose

This study aims to investigate the biomechanics of handcycling during a continuous load trial (CLT) to assess the mechanisms underlying fatigue in upper body exercise.

Methods

Twelve able-bodied triathletes performed a 30-min CLT at a power output corresponding to lactate threshold in a racing recumbent handcycle mounted on a stationary ergometer. During the CLT, ratings of perceived exertion (RPE), tangential crank kinetics, 3D joint kinematics, and muscular activity of ten muscles of the upper extremity and trunk were examined using motion capturing and surface electromyography.

Results

During the CLT, spontaneously chosen cadence and RPE increased, whereas crank torque decreased. Rotational work was higher during the pull phase. Peripheral RPE was higher compared to central RPE. Joint range of motion decreased for elbow-flexion and radial-duction. Integrated EMG (iEMG) increased in the forearm flexors, forearm extensors, and M. deltoideus (Pars spinalis). An earlier onset of activation was found for M. deltoideus (Pars clavicularis), M. pectoralis major, M. rectus abdominis, M. biceps brachii, and the forearm flexors.

Conclusion

Fatigue-related alterations seem to apply analogously in handcycling and cycling. The most distal muscles are responsible for force transmission on the cranks and might thus suffer most from neuromuscular fatigue. The findings indicate that peripheral fatigue (at similar lactate values) is higher in handcycling compared to leg cycling, at least for inexperienced participants. An increase in cadence might delay peripheral fatigue by a reduced vascular occlusion. We assume that the gap between peripheral and central fatigue can be reduced by sport-specific endurance training.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

ANOVA:

Analysis of variance

BB:

M. biceps brachii, Caput breve

CLT:

Continuous load trial

d :

Cohen’s d

DA:

M. deltoideus, Pars clavicularis

DP:

M. deltoideus, Pars spinalis

EC:

M. extensor carpi ulnaris (forearm extensors)

FC:

M. flexor carpi radialis (forearm flexors)

iEMG:

Integrated EMG (% MVIC)

LD:

M. latissimus dorsi

P 4 :

Calculated power output at a fixed lactate concentration of 4 mmol·l−1

PM:

M. pectoralis major, Pars sternalis

RA:

M. rectus abdominis

RPE:

Ratings of perceived exertion

SD:

Standard deviation

sEMG:

Surface electromyography

TB:

M. triceps brachii, Caput laterale

TD:

M. trapezius, Pars descendens

θ :

Angle

η 2p :

Partial eta squared

References

  1. Abbiss CR, Laursen PB (2005) Models to explain fatigue during prolonged endurance cycling. Sports Med 35(10):865–898. https://doi.org/10.2165/00007256-200535100-00004

    Article  PubMed  Google Scholar 

  2. Abel T, Schneider S, Platen P, Strüder HK (2006) Performance diagnostics in handbiking during competition. Spinal Cord 44(4):211–216. https://doi.org/10.1038/sj.sc.3101845

    CAS  Article  PubMed  Google Scholar 

  3. Abel T, Burkett B, Schneider S, Lindschulten R, Strüder HK (2010) The exercise profile of an ultra-long handcycling race. The Styrkeprøven experience. Spinal Cord 48(12):894–898. https://doi.org/10.1038/sc.2010.40

    CAS  Article  PubMed  Google Scholar 

  4. Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue. Cellular mechanism. Physiol Rev 88(1):287–332. https://doi.org/10.1152/physrev.00015.2007

    CAS  Article  Google Scholar 

  5. Amann M (2011) Central and peripheral fatigue Interaction during cycling exercise in humans. Med Sci Sports Exerc 43(11):2039–2045. https://doi.org/10.1249/mss.0b013e31821f59ab

    Article  PubMed  Google Scholar 

  6. Bafghi HA, de Haan A, Horstman A, van der Woude LHV (2008) Biophysical aspects of submaximal hand cycling. Int J Sports Med 29(8):630–638. https://doi.org/10.1055/s-2007-989416

    Article  PubMed  Google Scholar 

  7. Bini RR, Carpes FP, Diefenthaeler F, Mota CB, Guimarães ACS (2008) Physiological and electromyographic responses during 40-km cycling time trial. Relationship to muscle coordination and performance. J Sci Med Sport 11(4):363–370. https://doi.org/10.1016/j.jsams.2007.03.006

    Article  PubMed  Google Scholar 

  8. Bini RR, Diefenthaeler F, Mota CB (2010) Fatigue effects on the coordinative pattern during cycling. Kinetics and kinematics evaluation. J Electromyogr Kinesiol 20(1):102–107. https://doi.org/10.1016/j.jelekin.2008.10.003

    Article  PubMed  Google Scholar 

  9. Blake OM, Wakeling JM (2012) Muscle coordination during an outdoor cycling time trial. Med Sci Sports Exerc 44(5):939–948. https://doi.org/10.1249/MSS.0b013e3182404eb4

    Article  PubMed  Google Scholar 

  10. Borg DN, Osborne JO, Stewart IB, Costello JT, Sims JNL, Minett GM (2018) The reproducibility of 10 and 20 km time trial cycling performance in recreational cyclists, runners and team sport athletes. J Sci Med Sport 21(8):858–863. https://doi.org/10.1016/j.jsams.2018.01.004

    Article  PubMed  Google Scholar 

  11. Dallmeijer AJ, Ottjes L, de Waardt E, van der Woude LHV (2004) A physiological comparison of synchronous and asynchronous hand cycling. Int J Sports Med 25(8):622–626. https://doi.org/10.1055/s-2004-817879

    CAS  Article  PubMed  Google Scholar 

  12. de Morree HM, Marcora SM (2012) Frowning muscle activity and perception of effort during constant-workload cycling. Eur J Appl Physiol 112(5):1967–1972. https://doi.org/10.1007/s00421-011-2138-2

    Article  PubMed  Google Scholar 

  13. Decorte N, Lafaix PA, Millet GY, Wuyam B, Verges S (2012) Central and peripheral fatigue kinetics during exhaustive constant-load cycling. Scand J Med Sci Sports 22(3):381–391. https://doi.org/10.1111/j.1600-0838.2010.01167.x

    CAS  Article  PubMed  Google Scholar 

  14. Del Vecchio A, Negro F, Felici F, Farina D (2017) Associations between motor unit action potential parameters and surface EMG features. J Appl Physiol (Bethesda, Md.: 1985) 123(4):835–843. https://doi.org/10.1152/japplphysiol.00482.2017

    Article  Google Scholar 

  15. Elmer SJ, Marshall CS, Wehmanen K, Amann M, McDaniel J, Martin DT, Martin JC (2012) Effects of locomotor muscle fatigue on joint-specific power production during cycling. Med Sci Sports Exerc 44(8):1504–1511. https://doi.org/10.1249/MSS.0b013e31824fb8bd

    Article  PubMed  Google Scholar 

  16. Faude O, Hecksteden A, Hammes D, Schumacher F, Besenius E, Sperlich B, Meyer T (2017) Reliability of time-to-exhaustion and selected psycho-physiological variables during constant-load cycling at the maximal lactate steady-state. Appl Physiol Nutr Metabol Physiologie appliquee, nutrition et metabolisme 42(2):142–147. https://doi.org/10.1139/apnm-2016-0375

    CAS  Article  Google Scholar 

  17. Faupin A, Gorce P, Watelain E, Meyer C, Thevenon A (2010) A biomechanical analysis of handcycling. A case study. J Appl Biomech 26(2):240–245. https://doi.org/10.1123/jab.26.2.240

    Article  PubMed  Google Scholar 

  18. Fischer G, Tarperi C, George K, Ardigò LP (2014) An exploratory study of respiratory muscle endurance training in high lesion level paraplegic handbike athletes. Int J Sports Physiol Perform 24:69–75. https://doi.org/10.1097/jsm.0000000000000003

    Article  Google Scholar 

  19. Fischer G, Figueiredo P, Ardigò LP (2015) Physiological performance determinants of a 22-km handbiking time trial. Int J Sports Physiol Perform 10(8):965–971. https://doi.org/10.1123/ijspp.2014-0429

    Article  PubMed  Google Scholar 

  20. Fischer G, Figueiredo P, Ardigò LP (2020) Bioenergetics and biomechanics of handcycling at submaximal speeds in athletes with a spinal cord injury. Sports (Basel, Switzerland). https://doi.org/10.3390/sports8020016

    Article  Google Scholar 

  21. Green HJ (1997) Mechanisms of muscle fatigue in intense exercise. J Sports Sci 15(3):247–256. https://doi.org/10.1080/026404197367254

    CAS  Article  PubMed  Google Scholar 

  22. Heck H, Mader A, Hess G, Mucke S, Muller R, Hollmann W (1985) Justification of the 4-mmol/l lactate threshold. Int J Sports Med 6(3):117–130. https://doi.org/10.1055/s-2008-1025824

    CAS  Article  PubMed  Google Scholar 

  23. Heckman CJ, Enoka RM (2012) Motor unit. Comprehensive. Physiology 2(4):2629–2682. https://doi.org/10.1002/cphy.c100087

    CAS  Article  Google Scholar 

  24. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10(5):361–374. https://doi.org/10.1016/S1050-6411(00)00027-4

    CAS  Article  Google Scholar 

  25. Hettinga FJ, de Koning JJ, Broersen FT, van Geffen P, Foster C (2006) Pacing strategy and the occurrence of fatigue in 4000-m cycling time trials. Med Sci Sports Exerc 38(8):1484–1491. https://doi.org/10.1249/01.mss.0000228956.75344.91

    Article  PubMed  Google Scholar 

  26. Hug F, Dorel S (2009) Electromyographic analysis of pedaling: a review. J Electromyogr Kinesiol 19(2):182–198. https://doi.org/10.1016/j.jelekin.2007.10.010

    Article  PubMed  Google Scholar 

  27. Iannetta D, Inglis EC, Fullerton C, Passfield L, Murias JM (2018) Metabolic and performance-related consequences of exercising at and slightly above MLSS. Scand J Med Sci Sports 28(12):2481–2493. https://doi.org/10.1111/sms.13280

    Article  PubMed  Google Scholar 

  28. Kayser B (2003) Exercise starts and ends in the brain. Eur J Appl Physiol 90(3–4):411–419. https://doi.org/10.1007/s00421-003-0902-7

    Article  PubMed  Google Scholar 

  29. Kent-Braun JA, Fitts RH, Christie A (2012) Skeletal muscle fatigue. Comprehensive. Physiology 2(2):997–1044. https://doi.org/10.1002/cphy.c110029

    Article  Google Scholar 

  30. Kraaijenbrink C, Vegter RJK, Hensen AHR, Wagner H, van der Woude LHV (2020) Biomechanical and physiological differences between synchronous and asynchronous low intensity handcycling during practice-based learning in able-bodied men. J Neuroeng Rehabil 17(1):29. https://doi.org/10.1186/s12984-020-00664-8

    Article  PubMed  PubMed Central  Google Scholar 

  31. Krämer C, Schneider G, Bohm H, Klopfer-Kramer I, Senner V (2009) Effect of different handgrip angles on work distribution during hand cycling at submaximal power levels. Ergonomics 52(10):1276–1286. https://doi.org/10.1080/00140130902971916

    Article  PubMed  Google Scholar 

  32. Lepers R, Hausswirth C, Maffiuletti N, Brisswalter J, van Hoecke J (2000) Evidence of neuromuscular fatigue after prolonged cycling exercise. Med Sci Sports Exerc 32(11):1880–1886. https://doi.org/10.1097/00005768-200011000-00010

    CAS  Article  PubMed  Google Scholar 

  33. Lepers R, Millet GY, Maffiuletti NA (2001) Effect of cycling cadence on contractile and neural properties of knee extensors. Med Sci Sports Exerc 33(11):1882–1888. https://doi.org/10.1097/00005768-200111000-00013

    CAS  Article  PubMed  Google Scholar 

  34. Lepers R, Maffiuletti NA, Rochette L, Brugniaux J, Millet GY (2002) Neuromuscular fatigue during a long-duration cycling exercise. J Appl Physiol 92(4):1487–1493. https://doi.org/10.1152/japplphysiol.00880.2001

    Article  PubMed  Google Scholar 

  35. Litzenberger S, Mally F, Sabo A (2015) Influence of different seating and crank positions on muscular activity in elite handcycling—a case study. Procedia Eng 112:355–360. https://doi.org/10.1016/j.proeng.2015.07.262

    Article  Google Scholar 

  36. Litzenberger S, Mally F, Sabo A (2016) Biomechanics of elite recumbent handcycling. A case study. Sports Eng 19(3):201–211. https://doi.org/10.1007/s12283-016-0206-x

    Article  Google Scholar 

  37. Marais G, Dupont L, Vanvelcenaher J, Clarys JP, Pelayo P (2004) Effects of spontaneously chosen crank rate variations on electromyographic responses in sub-maximal arm exercise in inexperienced subjects. Eur J Appl Physiol 92(4–5):598–601. https://doi.org/10.1007/s00421-004-1187-1

    CAS  Article  PubMed  Google Scholar 

  38. Marsh AP, Martin PE (1995) The relationship between cadence and lower extremity EMG in cyclists and noncyclists. Med Sci Sports Exerc 27(2):217–225

    CAS  Article  Google Scholar 

  39. Martinez-Valdes E, Guzman-Venegas RA, Silvestre RA, Macdonald JH, Falla D, Araneda OF, Haichelis D (2016) Electromyographic adjustments during continuous and intermittent incremental fatiguing cycling. Scand J Med Sci Sports 26(11):1273–1282. https://doi.org/10.1111/sms.12578

    CAS  Article  PubMed  Google Scholar 

  40. Millet GY, Lepers R (2004) Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Med 34(2):105–116. https://doi.org/10.2165/00007256-200434020-00004

    Article  PubMed  Google Scholar 

  41. Momeni K, Faghri PD, Evans M (2014) Lower-extremity joint kinematics and muscle activations during semi-reclined cycling at different workloads in healthy individuals. J Neuroeng Rehabil 11:146. https://doi.org/10.1186/1743-0003-11-146

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mornieux G, Guenette JA, Sheel AW, Sanderson DJ (2007) Influence of cadence, power output and hypoxia on the joint moment distribution during cycling. Eur J Appl Physiol 102(1):11–18. https://doi.org/10.1007/s00421-007-0555-z

    Article  PubMed  Google Scholar 

  43. Neptune RR, Kautz SA, Hull ML (1997) The effect of pedaling rate on coordination in cycling. J Biomech 30(10):1051–1058. https://doi.org/10.1016/s0021-9290(97)00071-7

    CAS  Article  PubMed  Google Scholar 

  44. Price MJ, Collins L, Smith PM, Goss-Sampson M (2007) The effects of cadence and power output upon physiological and biomechanical responses to incremental arm-crank ergometry. Appl Physiol Nutr Metab 32(4):686–692. https://doi.org/10.1139/H07-052

    Article  PubMed  Google Scholar 

  45. Quittmann OJ, Abel T, Zeller S, Foitschik T, Strüder HK (2018a) Lactate kinetics in handcycling under various exercise modalities and their relationship to performance measures in able-bodied participants. Eur J Appl Physiol 118(7):1493–1505. https://doi.org/10.1007/S00421-018-3879-Y

    CAS  Article  PubMed  Google Scholar 

  46. Quittmann OJ, Meskemper J, Abel T, Albracht K, Foitschik T, Rojas-Vega S, Strüder HK (2018b) Kinematics and kinetics of handcycling propulsion at increasing workloads in able-bodied subjetcs. Sports Eng 21(4):283–294. https://doi.org/10.1007/S12283-018-0269-Y

    Article  Google Scholar 

  47. Quittmann OJ, Abel T, Albracht K, Strüder HK (2019) Reliability of muscular activation patterns and their alterations during incremental handcycling in able-bodied participants. Sports Biomech. https://doi.org/10.1080/14763141.2019.1593496

    Article  PubMed  Google Scholar 

  48. Quittmann OJ, Abel T, Albracht K, Strüder HK (2020a) Biomechanics of all-out handcycling exercise: kinetics, kinematics and muscular activity of a 15-s sprint test in able-bodied participants. Sports Biomech 19:1–24. https://doi.org/10.1080/14763141.2020.1745266

    Article  Google Scholar 

  49. Quittmann OJ, Meskemper J, Albracht K, Abel T, FoitschIk T, Strüder HK (2020b) Normalising surface emg of ten upper-extremity muscles in handcycling: manual resistance vs. sport-specific MVICS. J Electromyogr Kinesiol. https://doi.org/10.1016/J.JELEKIN.2020.102402

    Article  PubMed  Google Scholar 

  50. Reiser M, Meyer T, Kindermann W, Daugs R (2000) Transferability of workload measurements between three different types of ergometer. Eur J Appl Physiol 82(3):245–249. https://doi.org/10.1007/s004210050678

    CAS  Article  PubMed  Google Scholar 

  51. Ryan MM, Gregor RJ (1992) EMG profiles of lower extremity muscles during cycling at constant workload and cadence. J Electromyogr Kinesiol 2(2):69–80. https://doi.org/10.1016/1050-6411(92)90018-E

    CAS  Article  PubMed  Google Scholar 

  52. Sayers MGL, Tweddle AL, Every J, Wiegand A (2012) Changes in drive phase lower limb kinematics during a 60 min cycling time trial. J Sci Med Sport 15(2):169–174. https://doi.org/10.1016/j.jsams.2011.09.002

    Article  PubMed  Google Scholar 

  53. Smith PM, Price MJ, Doherty M (2001) The influence of crank rate on peak oxygen consumption during arm crank ergometry. J Sports Sci 19(12):955–960. https://doi.org/10.1080/026404101317108453

    CAS  Article  PubMed  Google Scholar 

  54. Stangier C, Abel T, Zeller S, Quittmann OJ, Perret C, Strüder HK (2019) Comparison of different blood lactate threshold concepts for constant load performance prediction in spinal cord injured handcyclists. Front Physiol 10:894. https://doi.org/10.3389/fphys.2019.01054

    Article  Google Scholar 

  55. Stone B, Mason BS, Warner MB, Goosey-Tolfrey VL (2019) Shoulder and thorax kinematics contribute to increased power output of competitive handcyclists. Scand J Med Sci Sports 29(6):843–853. https://doi.org/10.1111/sms.13402

    Article  PubMed  PubMed Central  Google Scholar 

  56. Suzuki S, Watanabe S, Homma S (1982) EMG activity and kinematics of human cycling movements at different constant velocities. Brain Res 240(2):245–258. https://doi.org/10.1016/0006-8993(82)90220-7

    CAS  Article  PubMed  Google Scholar 

  57. Thomas K, Goodall S, Stone M, Howatson G, St Clair Gibson A, Ansley L (2015) Central and peripheral fatigue in male cyclists after 4-, 20-, and 40-km time trials. Med Sci Sports Exerc 47(3):537–546. https://doi.org/10.1249/MSS.0000000000000448

    Article  PubMed  Google Scholar 

  58. Thomas K, Elmeua M, Howatson G, Goodall S (2016) Intensity-dependent contribution of neuromuscular fatigue after constant-load cycling. Med Sci Sports Exerc 48(9):1751–1760. https://doi.org/10.1249/MSS.0000000000000950

    Article  PubMed  PubMed Central  Google Scholar 

  59. Union Cycliste Internationale (UCI) (2019) UCI cycling regulations. Part 16 paracycling. https://www.uci.org/docs/default-source/rules-and-regulations/part-xvi–para-cycling.pdf?sfvrsn=47af1c56_34. Accessed 20 Oct 2019

  60. van der Woude LHV, Bosmans I, Bervoets B, Veeger DHEJ (2000) Handcycling. Different modes and gear ratios. J Med Eng Technol 24(6):242–249. https://doi.org/10.1152/jappl.1984.56.2.495

    Article  PubMed  Google Scholar 

  61. Vegter RJK, Mason BS, Sporrel B, Stone B, van der Woude LHV, Goosey-Tolfrey VL (2019) Crank fore-aft position alters the distribution of work over the push and pull phase during synchronous recumbent handcycling of able-bodied participants. PLoS One 14(8):e0220943. https://doi.org/10.1371/journal.pone.0220943

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Zajac FE (2002) Understanding muscle coordination of the human leg with dynamical simulations. J Biomech 35(8):1011–1018. https://doi.org/10.1016/S0021-9290(02)00046-5

    Article  PubMed  Google Scholar 

  63. Zeller S, Abel T, Smith PM, Strüder HK (2015) Influence of noncircular chainring on male physiological parameters in hand cycling. J Rehabil Res Dev 52(2):211–220. https://doi.org/10.1682/JRRD.2014.03.0070

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all participants who took part in this study for their patience and commitment. There were no funding sources for the present article.

Author information

Affiliations

Authors

Contributions

OJQ, TA, and KA conceived and designed research. OJQ and JM conducted experiments. TF provided medical check of the participants before experiments were performed and medical backup during experiments. OJQ and JM contributed new analytical tools. OJQ and analysed and wrote the manuscript. TA and KA reviewed the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Oliver J. Quittmann.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Olivier Seynnes.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quittmann, O.J., Abel, T., Albracht, K. et al. Biomechanics of handcycling propulsion in a 30-min continuous load test at lactate threshold: Kinetics, kinematics, and muscular activity in able-bodied participants. Eur J Appl Physiol 120, 1403–1415 (2020). https://doi.org/10.1007/s00421-020-04373-x

Download citation

Keywords

  • Fatigue
  • Handbike
  • EMG
  • Lactate steady state
  • RPE