Achten J, Jeukendrup AE (2003) Maximal fat oxidation during exercise in trained men. Int J Sports Med 24(8):603–608. https://doi.org/10.1055/s-2003-43265
CAS
Article
PubMed
Google Scholar
American Thoracic S, American College of Chest P (2003) ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 167(2):211–277. https://doi.org/10.1164/rccm.167.2.211
Article
Google Scholar
Billat LV (2001) Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part II: anaerobic interval training. Sports Med 31(2):75–90. https://doi.org/10.2165/00007256-200131020-00001
CAS
Article
PubMed
Google Scholar
Blomstrand E, Radegran G, Saltin B (1997) Maximum rate of oxygen uptake by human skeletal muscle in relation to maximal activities of enzymes in the Krebs cycle. J Physiol 501(Pt 2):455–460
CAS
Article
Google Scholar
Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK (1996) Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol (1985) 80(3):876–884. https://doi.org/10.1152/jappl.1996.80.3.876
CAS
Article
Google Scholar
Bonsu B, Terblanche E (2016) The training and detraining effect of high-intensity interval training on post-exercise hypotension in young overweight/obese women. Eur J Appl Physiol 116(1):77–84. https://doi.org/10.1007/s00421-015-3224-7
Article
PubMed
Google Scholar
Brocherie F, Girard O, Faiss R, Millet GP (2017) Effects of repeated-sprint training in hypoxia on sea-level performance: a meta-analysis. Sports Med 47(8):1651–1660. https://doi.org/10.1007/s40279-017-0685-3
Article
PubMed
Google Scholar
Camacho-Cardenosa A, Camacho-Cardenosa M, Brazo-Sayavera J, Burtscher M, Timon R, Olcina G (2018a) Effects of high-intensity interval training under normobaric hypoxia on cardiometabolic risk markers in overweight/obese women. High Alt Med Biol. https://doi.org/10.1089/ham.2018.0059
Article
PubMed
Google Scholar
Camacho-Cardenosa A, Camacho-Cardenosa M, Burtscher M, Martinez-Guardado I, Timon R, Brazo-Sayavera J, Olcina G (2018b) High-intensity interval training in normobaric hypoxia leads to greater body fat loss in overweight/obese women than high-intensity interval training in normoxia. Front Physiol 9:60. https://doi.org/10.3389/fphys.2018.00060
Article
PubMed
PubMed Central
Google Scholar
Casey DP, Joyner MJ (2012) Compensatory vasodilatation during hypoxic exercise: mechanisms responsible for matching oxygen supply to demand. J Physiol 590(24):6321–6326. https://doi.org/10.1113/jphysiol.2012.242396
CAS
Article
PubMed
PubMed Central
Google Scholar
Church T (2011) Exercise in obesity, metabolic syndrome, and diabetes. Prog Cardiovasc Dis 53(6):412–418. https://doi.org/10.1016/j.pcad.2011.03.013
Article
PubMed
Google Scholar
Cleland SM, Murias JM, Kowalchuk JM, Paterson DH (2012) Effects of prior heavy-intensity exercise on oxygen uptake and muscle deoxygenation kinetics of a subsequent heavy-intensity cycling and knee-extension exercise. Appl Physiol Nutr Metab 37(1):138–148. https://doi.org/10.1139/h11-143
CAS
Article
PubMed
Google Scholar
Colberg SR, Simoneau JA, Thaete FL, Kelley DE (1995) Skeletal muscle utilization of free fatty acids in women with visceral obesity. J Clin Investig 95(4):1846–1853. https://doi.org/10.1172/JCI117864
CAS
Article
PubMed
Google Scholar
Duncan GE (2006) Exercise, fitness, and cardiovascular disease risk in type 2 diabetes and the metabolic syndrome. Curr Diabetes Rep 6(1):29–35
CAS
Article
Google Scholar
Dunnwald T, Gatterer H, Faulhaber M, Arvandi M, Schobersberger W (2019) Body composition and body weight changes at different altitude levels: a systematic review and meta-analysis. Front Physiol 10:430. https://doi.org/10.3389/fphys.2019.00430
Article
PubMed
PubMed Central
Google Scholar
Endo M, Okada Y, Rossiter HB, Ooue A, Miura A, Koga S, Fukuba Y (2005) Kinetics of pulmonary VO2 and femoral artery blood flow and their relationship during repeated bouts of heavy exercise. Eur J Appl Physiol 95(5–6):418–430. https://doi.org/10.1007/s00421-005-0051-2
Article
PubMed
Google Scholar
Faiss R, Girard O, Millet GP (2013a) Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med 47(Suppl 1):i45–50. https://doi.org/10.1136/bjsports-2013-092741
Article
PubMed
PubMed Central
Google Scholar
Faiss R, Leger B, Vesin JM, Fournier PE, Eggel Y, Deriaz O, Millet GP (2013b) Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS ONE 8(2):e56522. https://doi.org/10.1371/journal.pone.0056522
CAS
Article
PubMed
PubMed Central
Google Scholar
Gatterer H, Haacke S, Burtscher M, Faulhaber M, Melmer A, Ebenbichler C, Strohl KP, Hogel J, Netzer NC (2015) Normobaric intermittent hypoxia over 8 months does not reduce body weight and metabolic risk factors—a randomized, single blind, placebo-controlled study in normobaric hypoxia and normobaric sham hypoxia. Obes Facts 8(3):200–209. https://doi.org/10.1159/000431157
CAS
Article
PubMed
PubMed Central
Google Scholar
Geiser J, Vogt M, Billeter R, Zuleger C, Belforti F, Hoppeler H (2001) Training high-living low: changes of aerobic performance and muscle structure with training at simulated altitude. Int J Sports Med 22(8):579–585. https://doi.org/10.1055/s-2001-18521
CAS
Article
PubMed
Google Scholar
Girard O, Malatesta D, Millet GP (2017) Walking in hypoxia: an efficient treatment to lessen mechanical constraints and improve health in obese individuals? Front Physiol 8:73. https://doi.org/10.3389/fphys.2017.00073
Article
PubMed
PubMed Central
Google Scholar
Gonzalez-Muniesa P, Lopez-Pascual A, de Andres J, Lasa A, Portillo MP, Aros F, Duran J, Egea CJ, Martinez JA (2015) Impact of intermittent hypoxia and exercise on blood pressure and metabolic features from obese subjects suffering sleep apnea–hypopnea syndrome. J Physiol Biochem 71(3):589–599. https://doi.org/10.1007/s13105-015-0410-3
CAS
Article
PubMed
Google Scholar
Haufe S, Wiesner S, Engeli S, Luft FC, Jordan J (2008) Influences of normobaric hypoxia training on metabolic risk markers in human subjects. Med Sci Sports Exerc 40(11):1939–1944. https://doi.org/10.1249/MSS.0b013e31817f1988
Article
PubMed
Google Scholar
Hobbins L, Hunter S, Gaoua N, Girard O (2017) Normobaric hypoxic conditioning to maximize weight loss and ameliorate cardio-metabolic health in obese populations: a systematic review. Am J Physiol Regul Integr Comp Physiol 313(3):R251–R264. https://doi.org/10.1152/ajpregu.00160.2017
CAS
Article
PubMed
Google Scholar
Hoppeler H, Vogt M (2001) Muscle tissue adaptations to hypoxia. J Exp Biol 204(Pt 18):3133–3139
CAS
PubMed
Google Scholar
Jabbour G, Iancu HD, Paulin A (2015) Effects of high-intensity training on anaerobic and aerobic contributions to total energy release during repeated supramaximal exercise in obese adults. Sports Med Open 1(1):36. https://doi.org/10.1186/s40798-015-0035-7
Article
PubMed
PubMed Central
Google Scholar
Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, Sugawara A, Totsuka K, Shimano H, Ohashi Y, Yamada N, Sone H (2009) Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA 301(19):2024–2035. https://doi.org/10.1001/jama.2009.681
CAS
Article
PubMed
Google Scholar
Larsen S, Danielsen JH, Sondergard SD, Sogaard D, Vigelsoe A, Dybboe R, Skaaby S, Dela F, Helge JW (2015) The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue. Scand J Med Sci Sports 25(1):e59–69. https://doi.org/10.1111/sms.12252
CAS
Article
PubMed
Google Scholar
Lee CD, Blair SN, Jackson AS (1999) Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. Am J Clin Nutr 69(3):373–380. https://doi.org/10.1093/ajcn/69.3.373
CAS
Article
PubMed
Google Scholar
Lobo A, Carvalho J, Santos P (2010) Effects of training and detraining on physical fitness, physical activity patterns, cardiovascular variables, and HRQoL after 3 health-promotion interventions in institutionalized elders. Int J Fam Med 2010:486097. https://doi.org/10.1155/2010/486097
Article
Google Scholar
Lundby C, Calbet JA, Robach P (2009) The response of human skeletal muscle tissue to hypoxia. Cell Mol Life Sci 66(22):3615–3623. https://doi.org/10.1007/s00018-009-0146-8
CAS
Article
PubMed
Google Scholar
McDonough P, Behnke BJ, Padilla DJ, Musch TI, Poole DC (2005) Control of microvascular oxygen pressures in rat muscles comprised of different fibre types. J Physiol 563(Pt 3):903–913. https://doi.org/10.1113/jphysiol.2004.079533
CAS
Article
PubMed
PubMed Central
Google Scholar
Millet GP, Candau R, Fattori P, Bignet F, Varray A (2003) VO2 responses to different intermittent runs at velocity associated with VO2max. Can J Appl Physiol 28(3):410–423. https://doi.org/10.1139/h03-030
Article
PubMed
Google Scholar
Millet GP, Debevec T, Brocherie F, Malatesta D, Girard O (2016) Therapeutic use of exercising in hypoxia: promises and limitations. Front Physiol 7:224. https://doi.org/10.3389/fphys.2016.00224
Article
PubMed
PubMed Central
Google Scholar
Moore RL, Thacker EM, Kelley GA, Musch TI, Sinoway LI, Foster VL, Dickinson AL (1987) Effect of training/detraining on submaximal exercise responses in humans. J Appl Physiol 63(5):1719–1724. https://doi.org/10.1152/jappl.1987.63.5.1719
CAS
Article
PubMed
Google Scholar
Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273. https://doi.org/10.1038/ng1180
CAS
Article
PubMed
Google Scholar
Mujika I, Padilla S (2000) Detraining: loss of training-induced physiological and performance adaptations. Part I: short term insufficient training stimulus. Sports Med (Auckland, NZ) 30(2):79–87. https://doi.org/10.2165/00007256-200030020-00002
CAS
Article
Google Scholar
Mujika I, Padilla S (2001) Cardiorespiratory and metabolic characteristics of detraining in humans. Med Sci Sports Exerc 33(3):413–421
CAS
Article
Google Scholar
Myers J, Kokkinos P, Nyelin E (2019) Physical activity, cardiorespiratory fitness, and the metabolic syndrome. Nutrients. https://doi.org/10.3390/nu11071652
Article
PubMed
PubMed Central
Google Scholar
Ortega FB, Ruiz JR, Castillo MJ, Sjostrom M (2008) Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes (Lond) 32(1):1–11. https://doi.org/10.1038/sj.ijo.0803774
CAS
Article
Google Scholar
Ramos-Campo DJ, Girard O, Perez A, Rubio-Arias JA (2019) Additive stress of normobaric hypoxic conditioning to improve body mass loss and cardiometabolic markers in individuals with overweight or obesity: a systematic review and meta-analysis. Physiol Behav 207:28–40. https://doi.org/10.1016/j.physbeh.2019.04.027
CAS
Article
PubMed
Google Scholar
Smith-Ryan AE, Trexler ET, Wingfield HL, Blue MN (2016) Effects of high-intensity interval training on cardiometabolic risk factors in overweight/obese women. J Sports Sci 34(21):2038–2046. https://doi.org/10.1080/02640414.2016.1149609
Article
PubMed
PubMed Central
Google Scholar
Venables MC, Achten J, Jeukendrup AE (2005) Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol 98(1):160–167. https://doi.org/10.1152/japplphysiol.00662.2003
Article
PubMed
Google Scholar
Wenger RH (2002) Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 16(10):1151–1162. https://doi.org/10.1096/fj.01-0944rev
CAS
Article
PubMed
Google Scholar
Wiesner S, Haufe S, Engeli S, Mutschler H, Haas U, Luft FC, Jordan J (2010) Influences of normobaric hypoxia training on physical fitness and metabolic risk markers in overweight to obese subjects. Obesity 18(1):116–120. https://doi.org/10.1038/oby.2009.193
CAS
Article
PubMed
Google Scholar