Skip to main content

Advertisement

Log in

Critical speed and finite distance capacity: norms for athletic and non-athletic groups

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Two parameters in particular span both health and performance; critical speed (CS) and finite distance capacity (D′). The purpose of the present study was to: (1) classify performance norms, (2) distinguish athletic from non-athletic individuals using the 3-min all-out test (3MT) for running, and (3) introduce a deterministic model highlighting the relationship between variables of the 3MT.

Methods

Athletic (n = 43) and non-athletic (n = 25) individuals participated in the study. All participants completed a treadmill graded exercise test (GXT) with verification bout and a 3MT on an outdoor sprinting track.

Results

Meaningful differences between non-athletic and athletic individuals (denoted by mean difference scores, p value and Cohen’s d with 95% confidence intervals) were evident for CS (− 0.74 m s−1, p < 0.001, d = − 1.41 [1.97, − 0.87]), exponential growth time constant (\(\tau_{{\text{g}}}\); 2.75 s, p < 0.001, d = − 1.29 [− 1.45, − 0.42]), time to maximal speed (\(t_{\max }\); − 2.80 s, p < 0.001, d = − 0.98 [− 1.51, − 0.47]), maximal speed (\(S_{\max }\); − 1.36 m s−1, p < 0.001, d = − 1.56 [− 2.13, − 1.01]), gas exchange threshold (GET; − 5.62 ml kg−1 min−1, p < 0.001, d = − 0.97 [− 1.50, − 0.45]), distance covered in the first minute (1st min; − 81.69 m, p < 0.001, d = − 1.91 [− 2.52, − 1.33]), distance covered in the second minute (2nd min; − 52.02 m, p < 0.001, d = − 1.71 [− 2.30, − 1.15]) and maximal distance (− 153.78 m, p < 0.001, d = − 1.27 [− 1.82, − 0.74]). The correlation coefficient between key physiological and performance variables are shown in the form of a deterministic model created from the data derived from the 3MT.

Conclusions

Coaches and clinicians may benefit from the use of normative data to potentially identify exceptional or irregular occurrences in 3MT performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\(1{\text{st}} \min\) :

Distance covered in the 1st minute of the 3MT (m)

\(2{\text{nd}} \min\) :

Distance covered in the 2nd minute of the 3MT (m)

\(3{\text{rd}} \min\) :

Distance covered in the 3rd minute of the 3MT (m)

\({\text{3MT}}\) :

3-Minute all-out test

\(A_{{\text{g}}}\) :

Exponential growth amplitude (m s1)

\(A_{{\text{d}}}\) :

Exponential decay amplitude (m s1)

\({\text{CS}}\) :

Critical speed (m s1)

CP:

Critical power (W)

D′:

Finite distance achievable at speeds exceeding CS (m)

e :

Euler’s constant (i.e., a mathematical constant ~ 2.718)

GET:

Gas exchange threshold (ml kg1 min1)

HIIT:

High-intensity interval training

MICT:

Moderate-intensity continuous training

S(t):

Instantaneous speed at any time t during the 3MT (m s1)

sGET:

Speed evoking GET (m s1)

\(S_{\max }\) :

Maximal speed attained during the 3MT

\(\tau_{{\text{g}}}\) :

Exponential growth time constant (s)

\(\tau_{{\text{d}}}\) :

Exponential decay time constant (s)

\(t_{{{\text{LIM}}}}\) :

Time limit to exhaustion (s)

\(t_{\max }\) :

Time to achieve \(S_{max}\) during the 3MT (s)

\(\dot{V}{\text{O}}_{{{\text{2max}}}}\) :

Maximal oxygen uptake rate (ml kg1 min1)

\({\text{s}}\dot{V}{\text{O}}_{{{\text{2max}}}}\) :

Speed evoking \(\dot{V}{\text{O}}_{{{\text{2max}}}}\) (m s1)

W′:

Finite energy expendable at power outputs exceeding CP (J)

References

  • American College of Sports Medicine (2018) ACSM’s guidelines for exercise testing and prescription. In: Riebe D, Ehrman JK, Liguori G, Magal M (eds) 10th ed. Wolters Kluwer, Philadelphia.

  • Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting threshold by gas exchange anaerobic. J Appl Physiol 60(6):2020–2027

    Article  CAS  PubMed  Google Scholar 

  • Broxterman RM, Ade CJ, Poole DC, Harms CA, Barstow TJ (2013) A single test for the determination of parameters of the speed-time relationship for running. Respir Physiol Neurobiol 185:380–385

    Article  CAS  PubMed  Google Scholar 

  • Buchheit M, Laursen PB (2013) High-intensity interval training, solutions to the programming puzzle: Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med 43(10):927–954

    Article  PubMed  Google Scholar 

  • Burnley M, Doust JH, Vanhatalo A (2006) A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Med Sci Sports Exerc 38(11):1995–2003

    Article  PubMed  Google Scholar 

  • Carter H, Dekerle J (2014) Metabolic stress at cycling critical power vs. running critical speed. Sci Sports 29:51–54

    Article  Google Scholar 

  • Clark IE, West BM, Reynolds SK, Murray SR, Pettitt RW (2013) Applying the critical velocity model for an off-season interval training program. J Strength Condition Res 27(12):3335–3341

    Article  Google Scholar 

  • Clarke AC, Rattray B, Pyne DB (2013) Critical velocity as a measure of aerobic fitness in women ’ s rugby sevens. J Sci Med Sport 2017:8–13

    Google Scholar 

  • Craig JC, Vanhatalo A, Burnley M, Jones AM, Poole DC (2019) Critical power: possibly the most important fatigue threshold in exercise physiology. In: A Zoladz (ed) Elsevier Inc, London

  • Cumming G (2012) Understanding the new statistics: effect sizes, confidence intervals, and meta-analysis. Taylor and Francis, Routledge

    Google Scholar 

  • Cumming G, Calin-Jageman R (2017) Introduction to the new statistics: estimation, open science, and beyond. Taylor and Francis, Routledge

    Google Scholar 

  • Di Prampero PE, Dekerle J, Capelli C, Zamparo P (2008) The critical velocity in swimming. Eur J Appl Physiol 102(2):165–171

    Article  PubMed  Google Scholar 

  • Fukuba Y, Whipp BJ (1999) A metabolic limit on the ability to make up for lost time in endurance events. J Appl Physiol 87:853–861

    Article  CAS  PubMed  Google Scholar 

  • Gabbet TJ, Kelly JN, Sheppard JM (2008) Speed, change of direction speed, and reactive agility of rugby league players. J Strength Condition 22(1):174–181

    Article  Google Scholar 

  • Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-M, Nieman DC, Swain DP (2011) Quantity and quality of exercise for developing and maintaining neuromotor fitness in apparently healthy adults : guidance for prescribing exercise. Med Sci Sports Exerc 47(7):1334–1359

    Article  Google Scholar 

  • García-Pinillos F, Latorre-Román PA, Soto-Hermoso VM, Párraga-Montilla JA, Pantoja-Vallejo A, Ramírez-Campillo R, Roche-Seruendo LE (2019) Agreement between the spatiotemporal gait parameters from two different wearable devices and high-speed video analysis. PLoS ONE 14(9):1–11

    Article  CAS  Google Scholar 

  • George JD, Stone WJ, Burkett LN (1997) Non-exercise ˙VO2max estimation for physically active college students. Med Sci Sports Exerc 29(3):415–423

    Article  CAS  PubMed  Google Scholar 

  • Giles D, Draper N, Neil W (2016) Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur J Appl Physiol 116(3):563–571

    Article  PubMed  Google Scholar 

  • Girard O, Mendez-Villanueva A, Bishop D (2011) Repeated-sprint ability part I: factors contributing to fatigue. Sports Med 41(8):673–694

    Article  PubMed  Google Scholar 

  • Hannan AL, Hing W, Climstein M, Coombes JS, Byrnes J, Furness J (2018) High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: a systematic review and meta-analysis. Open Access J Sports Med 9(2018):1–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Haugen T, Buchheit M (2016) Sprint running performance monitoring: methodological and practical considerations. Sports Med 46(5):641–656

    Article  PubMed  Google Scholar 

  • Helgerud J, Engen LC, Wisløff U, Hoff J (2001) Aerobic endurance training improves soccer performance. Med Sci Sports Exerc 33(11):1925–1931

    Article  CAS  PubMed  Google Scholar 

  • Helmerhorst HJF, Brage S, Warren J, Besson H, Ekelund U (2012) A systematic review of reliability and objective criterion-related validity of physical activity questionnaires. Int J Behav Nutr Phys Activ 9:103

    Article  Google Scholar 

  • Hopkins K, Stanley J (1981) Educational and psychological measurement and evaluation, 6th edn. Prentice Hall, Engelwoord

    Google Scholar 

  • James LP, Kelly VG, Beckman EM (2013) Periodization for mixed martial arts. Strength Condition J 35(6):34–45

    Article  Google Scholar 

  • Jamnick NA, By S, Pettitt CD, Pettitt RW (2016) Comparison of the YMCA and a custom submaximal exercise test for determining VO2max. Med Sci Sports Exerc 48(2):254–259

    Article  PubMed  Google Scholar 

  • Jones AM, Vanhatalo A (2017) The ‘critical power’ concept: applications to sports performance with a focus on intermittent high-intensity exercise. Sports Med 47(s1):65–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones AM, Burnley M, Black MI, Poole DC, Vanhatalo A (2019) The maximal metabolic steady state: redefining the ‘gold standard’. Physiol Rep 7:1–16

    Article  Google Scholar 

  • Kaminsky LA, Arena R, Myers J (2015) Reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing: data from the fitness registry and the importance of exercise national database. Mayo Clin Proc 90(11):1515–1523

    Article  PubMed  Google Scholar 

  • Karsten B, Jobson SA, Hopker J, Passfield L, Beedie C (2014) The 3-min test does not provide a valid measure of critical power using the SRM isokinetic mode. Int J Sports Med 35(4):304–309

    CAS  PubMed  Google Scholar 

  • Karsten B, Larumbe-zabala E, Kandemir G, Hazir T (2016) The Effects of a 6-week strength training on critical velocity, anaerobic running distance, 30-M sprint and Yo-Yo intermittent running test performances in male soccer players. PLoS ONE 11(3):e0151448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kendall KL, Smith AE, Fukuda DH, Dwyer TR, Stout JR, Kendall KL, Smith AE, Fukuda DH et al (2011) Critical velocity: a predictor of 2000-m rowing ergometer performance in NCAA D1 female collegiate rowers. J Sports Sci 29(9):945–950

    Article  PubMed  Google Scholar 

  • Kirkeberg JM, Dalleck LC, Kamphoff CS, Pettitt RW (2011) Validity of 3 protocols for verifying VO2max. Int J Sports Med 32(4):266–270

    Article  CAS  PubMed  Google Scholar 

  • Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, Sugawara A, Totsuka K et al (2009) CLINICIAN’S CORNER cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events. J Am Med Assoc 301(19):2024–2035

    Article  CAS  Google Scholar 

  • Kramer M, Du Randt R, Watson M, Pettitt RW (2018a) Oxygen uptake kinetics and speed-time correlates of modified 3-minute all-out shuttle running in soccer players. PLoS ONE 13(8):e0201389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kramer M, Clark IE, Jamnick N, Strom C, Pettitt RW (2018b) Normative data for critical speed and D′ for high-level male rugby players. J Strength Condition Res 32(3):783–789

    Article  Google Scholar 

  • Kramer M, Du Randt R, Watson M, Pettitt RW (2019a) Bi-exponential modeling derives novel parameters for the critical speed concept. Physiol Rep 7(4):e13993

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramer M, Du Randt R, Watson M, Pettitt RW (2019b) Energetics of male field-sport athletes during the 3-min all-out test for linear and shuttle-based running. Eur J Appl Physiol 119:477–486

    Article  PubMed  Google Scholar 

  • Kramer M, Watson M, Du Randt R, Pettitt RW (2019c) Critical speed as a measure of aerobic fitness for male rugby union players. Int J Sports Physiol Perform 8:518–524

    Article  Google Scholar 

  • Kuo YH, Cheng CF, Hsu WC, Wong DP (2017) Validity and reliability of the 3-min all-out running test to measure critical velocity in hot environments. Res Sports Med 25(4):470–479

    Article  PubMed  Google Scholar 

  • Mezzani A, Corrà U, Giordano A, Colombo A, Psaroudaki M, Giannuzzi P (2010) Upper intensity limit for prolonged aerobic exercise in chronic heart failure. Med Sci Sports Exerc 42(4):633–639

    Article  PubMed  Google Scholar 

  • Milanović Z, Sporiš G, Weston M (2015) Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med 45(10):1469–1481

    Article  PubMed  Google Scholar 

  • Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, Atkins D, Barbour V et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement (Chinese edition). J Clin Epidemiol 62:1006–1012

    Article  PubMed  Google Scholar 

  • Moritani T, Nagata A, Devries HA, Muro M (1981) Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics 24(5):339–350

    Article  CAS  PubMed  Google Scholar 

  • Muniz-Pumares D, Karsten B, Triska C, Glaister M (2019) Methodological approaches and related challenges associated with the determination of critical power and curvature constant. J Strength Condition Res 32(2):584–596

    Article  Google Scholar 

  • Nummela A, Mikkelsson LO (2007) Factors related to top running speed and economy. Int J Sports Med 28(8):655–661

    Article  CAS  PubMed  Google Scholar 

  • Pettitt RW (2016) Applying the critical speed concept to racing strategy and interval training prescription. Int J Sports Physiol Perform 11(7):842–847

    Article  PubMed  Google Scholar 

  • Pettitt RW, Jamnick N, Clark IE (2012) 3-min all-out exercise test for running. Int J Sports Med 33:426–431

    Article  CAS  PubMed  Google Scholar 

  • Poole DC, Jones AM (2012) Oxygen uptake kinetics. Compr Physiol 2:933–996

    Article  PubMed  Google Scholar 

  • Poole D, Burnley M, Rossiter HB, Jones AM (2016) Critical power: an important fatigue threshold in exercise physiology. Med Sci Sports Exerc 48(11):2320–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reilly T, Borrie A (1992) Physiology applied to field hockey. Sports Med Int J Appl Med Sci Sport Exerc 14(1):10–26

    CAS  Google Scholar 

  • Saari A, Dicks ND, Hartman ME, Pettitt RW (2019) Validation of the 3-minute all-out exercise test for shuttle running prescription. J Strength Condition Res 33(6):1678–1684

    Article  Google Scholar 

  • Sandford GN, Kilding AE, Ross A, Laursen PB (2019) Maximal sprint speed and the anaerobic speed reserve domain: the untapped tools that differentiate the world’s best male 800 m runners. Sports Med 49(6):843–852

    Article  PubMed  Google Scholar 

  • Seiler S, Tønnessen E (2009) Intervals , thresholds , and long slow distance: the role of intensity and duration in endurance training. Sportscience 13(13):32–53. https://sportsci.org/2009/ss.htm

  • Strom CJ, Pettitt RW, Krynski LM, Jamnick NA, Hein CJ, Pettitt CD (2018) Validity of a customized submaximal treadmill protocol for determining-VO2max. Eur J Appl Physiol 118(9):1781–1787

    Article  PubMed  Google Scholar 

  • Suchomel TJ, Nimphius S, Bellon CR, Stone MH (2018) The importance of muscular strength: training considerations. Sports Med 48(4):765–785

    Article  PubMed  Google Scholar 

  • Todd JJ (2014) Review Lactate : valuable for physical performance and maintenance of brain function during exercise. Biosci Horizons 7:1–7

    Article  CAS  Google Scholar 

  • Tsai MC, Thomas SG (2017) Three-minute all-out test in swimming. Int J Sports Physiol Perform 12(1):27–35

    Article  PubMed  Google Scholar 

  • Vanhatalo A, Black MI, DiMenna FJ, Blackwell JR, Schmidt JF, Thompson C, Wylie LJ, Mohr M et al (2016) The mechanistic bases of the power–time relationship: muscle metabolic responses and relationships to muscle fibre type. J Physiol 594(15):4407–4423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright J, Bruce-Low S, Jobson SA (2017) The reliability and validity of the 3-min all-out cycling critical power test. Int J Sports Med 38:6

    Google Scholar 

Download references

Acknowledgements

We would like to that all participants, athletic and non-athletic alike, for their willingness and whole-hearted efforts to participate all-out in this study. We would also like to thank Grant Gait-Smith for his hard work and effort during the data collection process.

Funding

No financial support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Kramer.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Anni Vanhatalo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kramer, M., Thomas, E.J. & Pettitt, R.W. Critical speed and finite distance capacity: norms for athletic and non-athletic groups. Eur J Appl Physiol 120, 861–872 (2020). https://doi.org/10.1007/s00421-020-04325-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-020-04325-5

Keywords

Navigation