Myocardial adaptability in young and older-aged sea-level habitants sojourning at Mt Kilimanjaro: are cardiac compensatory limits reached in older trekkers?

Abstract

Introduction

High-altitude ascent induces left (LV) and right (RV) ventricular adaptations secondary to hypoxia-related hemodynamic and myocardial alterations. Since cardiopulmonary decrements observed with aging (e.g., decreased LV compliance and increased pulmonary vascular resistance) may limit cardiac plasticity, this study examined myocardial adaptability throughout an 11 day sojourn to 5893 m in young and older-aged trekkers.

Methods and results

Echocardiography was performed on 14 young (8 men; 32 ± 5 years) and 13 older-aged (8 men; 59 ± 5 years) subjects on non-trekking days (Day 0: 880 m; Day 3: 3100 m; Day 8: 4800 m; Day 12/post-climb: 880 m). RV systolic pressure (mmHg) was systematically higher in older-aged subjects (p < 0.01) with similar progressive increases observed during ascent for young and older subjects, respectively (Day 0: 18 ± 1 vs 20 ± 2; Day 3: 25 ± 2 vs 29 ± 3; Day 8: 30 ± 2 vs 35 ± 2). Estimates of LV filling pressure (E/E′) were systematically higher in older subjects (p < 0.01) with similar progressive decreases observed during ascent for young and older-aged subjects, respectively (Day 0: 5.6 ± 0.3 vs 6.7 ± 0.5; Day 3: 5.1 ± 0.2 vs 6.1 ± 0.3; Day 8: 4.7 ± 0.3 vs 5.4 ± 0.3). Overall, RV end-diastolic and end-systolic area increased at altitude (p < 0.01), while LV end-diastolic and end-systolic volume decreased (p < 0.01). However, all RV and LV morphological measures were similar on Day 3 and Day 8 (p > 0.05), and returned to baseline post-climb (p > 0.05). Excluding mild LV dilatation in some older-aged trekkers on Day 8/Day 12 (p < 0.01), altitude-induced morphological and functional adaptations were similar for all trekkers (p > 0.05).

Conclusion

Altitude-induced myocardial adaptations are chamber specific, secondary to RV and LV hemodynamic alterations. Despite progressive hemodynamic alterations during ascent, morphological and functional cardiac perturbations plateaued, suggesting rapid myocardial adaptation which was mostly comparable in young and older-aged individuals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Alexander JK, Hartley LH, Modelski M, Grover RF (1967) Reduction of stroke volume during exercise in man following ascent to 3,100 m altitude. J Appl Physiol 23:849–858. https://doi.org/10.1152/jappl.1967.23.6.849

    CAS  Article  PubMed  Google Scholar 

  2. Beidleman BA, Staab JE, Glickman EL (2008) Neurohumoral responses and adaptations during rest and exercise at altitude. Endocr Syst Sports Exerc. https://doi.org/10.1002/9780470757826.ch30

    Article  Google Scholar 

  3. Benso A, Broglio F, Aimaretti G, Lucatello B, Lanfranco F, Ghigo E, Grottoli S (2007) Endocrine and metabolic responses to extreme altitude and physical exercise in climbers. Eur J Endocrinol 157:733–740. https://doi.org/10.1530/EJE-07-0355

    CAS  Article  PubMed  Google Scholar 

  4. Burtscher M, Gatterer H, Burtscher J, Mairbaurl H (2018) Extreme terrestrial environments: life in thermal stress and hypoxia. Narrat Rev Front Physiol. https://doi.org/10.3389/fphys.2018.00572

    Article  Google Scholar 

  5. Chemla D, Castelain V, Humbert M, Hebert JL, Simonneau G, Lecarpentier Y, Herve P (2004) New formula for predicting mean pulmonary artery pressure using systolic pulmonary artery pressure. Chest 126:1313–1317. https://doi.org/10.1378/chest.126.4.1313

    Article  PubMed  Google Scholar 

  6. Claessen G et al (2016) Accuracy of echocardiography to evaluate pulmonary vascular and rv function during exercise. JACC Cardiovasc Imaging 9:532–543. https://doi.org/10.1016/j.jcmg.2015.06.018

    Article  PubMed  Google Scholar 

  7. Coffman KE, Stewart GM, Carlson AR, Wheatley CM, Johnson BD (2019) Effect of age on the presence of comet tails at high altitude. Resp Physiol Neurobiol 259:166–169. https://doi.org/10.1016/j.resp.2018.07.010

    Article  Google Scholar 

  8. Davidson WR, Fee EC (1990) Influence of aging on pulmonary hemodynamics in a population free of coronary-artery disease. Am J Cardiol 65:1454–1458. https://doi.org/10.1016/0002-9149(90)91354-9

    Article  PubMed  Google Scholar 

  9. Dill DB, Horvath SM, Dahms TE, Parker RE, Lynch JR (1969) Hemoconcentration at altitude. J Appl Physiol 27:514–518. https://doi.org/10.1152/jappl.1969.27.4.514

    CAS  Article  PubMed  Google Scholar 

  10. Euler US, Liljestrand G (1946) Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand 12:301–320. https://doi.org/10.1111/j.1748-1716.1946.tb00389.x

    Article  Google Scholar 

  11. Friedberg MK (2018) Imaging right-left ventricular interactions. JACC Cardiovasc Imaging 11:755–771. https://doi.org/10.1016/j.jcmg.2018.01.028

    Article  PubMed  Google Scholar 

  12. Fujimoto N et al (2012) Effect of ageing on left ventricular compliance and distensibility in healthy sedentary humans. J Physiol Lond 590:1871–1880. https://doi.org/10.1113/jphysiol.2011.218271

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Grosu A, Bombardini T, Senni M, Duino V, Gori M, Picano E (2005) End-systolic pressure/volume relationship during dobutamine stress echo: a prognostically useful non-invasive index of left ventricular contractility. Eur Heart J 26:2404–2412. https://doi.org/10.1093/eurheartj/ehi444

    Article  PubMed  Google Scholar 

  14. Groves BM et al (1987) Operation Everest II: elevated high-altitude pulmonary resistance unresponsive to oxygen. J Appl Physiol 63:521–530. https://doi.org/10.1152/jappl.1987.63.2.521

    CAS  Article  PubMed  Google Scholar 

  15. Guyton AC, Lindsey AW, Gilluly JJ (1954) The limits of right ventricular compensation following acute increase in pulmonary circulatory resistance. Circ Res 2:326–332

    CAS  Article  Google Scholar 

  16. Hees PS, Fleg JL, Lakatta EG, Shapiro EP (2002) Left ventricular remodeling with age in normal men versus women: novel insights using three-dimensional magnetic resonance imaging. Am J Cardiol 90:1231–1236. https://doi.org/10.1016/S0002-9149(02)02840-0

    Article  PubMed  Google Scholar 

  17. Kjaergaard J, Snyder EM, Hassager C, Olson TP, Oh JK, Johnson BD, Frantz RP (2007) Right ventricular function with hypoxic exercise: effects of sildenafil. Eur J Appl Physiol 102:87–95. https://doi.org/10.1007/s00421-007-0560-2

    Article  PubMed  Google Scholar 

  18. Lang RM et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–U170. https://doi.org/10.1016/j.echo.2014.10.003

    Article  PubMed  Google Scholar 

  19. Levine BD, Zuckerman JH, deFilippi CR (1997) Effect of high-altitude exposure in the elderly: the tenth mountain division study. Circulation 96:1224–1232. https://doi.org/10.1161/01.Cir.96.4.1224

    CAS  Article  PubMed  Google Scholar 

  20. Mazzeo RS, Brooks GA, Butterfield GE, Podolin DA, Wolfel EE, Reeves JT (1995) Acclimatization to high-altitude increases muscle sympathetic activity both at rest and during exercise. Am J Physiol-Reg I(269):R201–R207

    Google Scholar 

  21. Naeije R (2010) Physiological adaptation of the cardiovascular system to high altitude. Prog Cardiovasc Dis 52:456–466. https://doi.org/10.1016/j.pcad.2010.03.004

    Article  PubMed  Google Scholar 

  22. Naeije R, Dedobbeleer C (2013) Pulmonary hypertension and the right ventricle in hypoxia. Exp Physiol 98:1247–1256. https://doi.org/10.1113/expphysiol.2012.069112

    Article  PubMed  Google Scholar 

  23. Osculati G et al (2016) Effects of hypobaric hypoxia exposure at high altitude on left ventricular twist in healthy subjects: data from HIGHCARE study on Mount Everest. Eur Heart J 17:635–643. https://doi.org/10.1093/ehjci/jev166

    Article  Google Scholar 

  24. Porter TR, Shillcutt SK, Adams MS, Desjardins G, Glas KE, Olson JJ, Troughton RW (2015) Guidelines for the use of echocardiography as a monitor for therapeutic intervention in adults: a report from the american society of echocardiography. J Am Soc Echocardiogr 28:40–56. https://doi.org/10.1016/j.echo.2014.09.009

    Article  PubMed  Google Scholar 

  25. Pratali L et al (2013) RV contractility and exercise-induced pulmonary hypertension in chronic mountain sickness: a stress echocardiographic and tissue Doppler imaging study. JACC Cardiovasc Imaging 6:1287–1297. https://doi.org/10.1016/j.jcmg.2013.08.007

    Article  PubMed  Google Scholar 

  26. Raymond RJ et al (2002) Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol 39:1214–1219

    Article  Google Scholar 

  27. Reeves JT et al (1987) Operation Everest-II: preservation of cardiac-function at extreme altitude. J Appl Physiol 63:531–539

    CAS  Article  Google Scholar 

  28. Riebe D, Franklin BA, Thompson PD, Garber CE, Whitfield GP, Magal M, Pescatello LS (2015) Updating ACSM's recommendations for exercise preparticipation health screening. Med Sci Sports Exerc 47:2473–2479. https://doi.org/10.1249/MSS.0000000000000664

    CAS  Article  PubMed  Google Scholar 

  29. Siebenmann C, Robach P, Lundby C (2017) Regulation of blood volume in lowlanders exposed to high altitude. J Appl Physiol 123:957–966. https://doi.org/10.1152/japplphysiol.00118.2017

    CAS  Article  PubMed  Google Scholar 

  30. Stembridge M et al (2019) The independent effects of hypovolaemia and pulmonary vasoconstriction on ventricular function and exercise capacity during acclimatisation to 3800 m. J Physiol 597:1059–1072. https://doi.org/10.1113/JP275278

    CAS  Article  PubMed  Google Scholar 

  31. Stembridge M, Ainslie PN, Hughes MG, Stohr EJ, Cotter JD, Nio AQX, Shave R (2014) Ventricular structure, function, and mechanics at high altitude: chronic remodeling in Sherpa vs. short-term lowlander adaptation. J Appl Physiol 117:334–343. https://doi.org/10.1152/japplphysiol.00233.2014

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stembridge M et al (2015) Impaired myocardial function does not explain reduced left ventricular filling and stroke volume at rest or during exercise at high altitude. J Appl Physiol 119:1219–1227. https://doi.org/10.1152/japplphysiol.00995.2014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Stembridge M, Levine B (2019) Cardiac performance with chronic hypoxia: mechanisms regulating stroke volume. Curr Opin Physiol 7:66–71. https://doi.org/10.1016/j.cophys.2018.12.007

    Article  Google Scholar 

  34. Stewart GM, Yamada A, Haseler LJ, Kavanagh JJ, Koerbin G, Chan J, Sabapathy S (2015) Altered ventricular mechanics after 60 min of high-intensity endurance exercise: insights from exercise speckle-tracking echocardiography. Am J Physiol Heart Circ Physiol 308:875–883. https://doi.org/10.1152/ajpheart.00917.2014

    CAS  Article  Google Scholar 

  35. Stewart GM, Yamada A, Kavanagh JJ, Haseler LJ, Chan J, Sabapathy S (2016) Reproducibility of echocardiograph-derived multilevel left ventricular apical twist mechanics. Echocardiography 33:257–263. https://doi.org/10.1111/echo.13020

    Article  PubMed  Google Scholar 

  36. Swenson ER (2013) Hypoxic pulmonary vasoconstriction. High Alt Med Biol 14:101–110. https://doi.org/10.1089/ham.2013.1010

    Article  PubMed  Google Scholar 

  37. Swinne CJ, Shapiro EP, Lima SD, Fleg JL (1992) Age-associated changes in left-ventricular diastolic performance during isometric-exercise in normal subjects. Am J Cardiol 69:823–826. https://doi.org/10.1016/0002-9149(92)90518-4

    CAS  Article  PubMed  Google Scholar 

  38. Tucker CE, James WE, Berry MA, Johnstone CJ, Grover RF (1976) Depressed myocardial-function in goat at high-altitude. J Appl Physiol 41:356–361

    CAS  Article  Google Scholar 

  39. West JB (1984) Human physiology at extreme altitudes on Mount Everest. Science 223:784–788. https://doi.org/10.1126/science.6364351

    CAS  Article  PubMed  Google Scholar 

  40. West JB (2006) Human responses to extreme altitudes. Integr Comp Biol 46:25–34. https://doi.org/10.1093/icb/icj005

    CAS  Article  PubMed  Google Scholar 

  41. West JB (2016) Oxygen conditioning: a new technique for improving living and working at high altitude. Physiology 31:216–222. https://doi.org/10.1152/physiol.00057.2015

    CAS  Article  PubMed  Google Scholar 

  42. West JB (2017) Physiological effects of chronic hypoxia. N Engl J Med 376:1965–1971. https://doi.org/10.1056/NEJMra1612008

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their gratitude to each of the participants for their dedicated time and effort to this study whilst on the expedition, and to the Kili Treks Tanzania team members for their logistical support. This study was funded by Thorne Research, a research fund by the late Dr. Paul Magelli who was a long-time faculty member of the University of Illinois Business School, and Philips Healthcare. Glenn M. Stewart is funded by an American Heart Association Postdoctoral Fellowship (AHA#19POST34450022).

Author information

Affiliations

Authors

Contributions

GMS, CMW and BDJ conceived and designed the research. GMS, CMW, NRM, KEC, JS, ARC, AI, MAS and BDJ conducted experiments. GMS, CMW, NRM and BDJ analyzed and interpreted the data. GMS wrote the manuscript. GMS, CMW, NRM, YS and BDJ edited and revised the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Glenn M. Stewart.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Keith Phillip George.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stewart, G.M., Wheatley-Guy, C.M., Morris, N.R. et al. Myocardial adaptability in young and older-aged sea-level habitants sojourning at Mt Kilimanjaro: are cardiac compensatory limits reached in older trekkers?. Eur J Appl Physiol 120, 799–809 (2020). https://doi.org/10.1007/s00421-020-04319-3

Download citation

Keywords

  • Cardiac function
  • Echocardiography
  • Aging
  • Expedition
  • Trekking
  • High altitude