Skip to main content

Intermittent not continuous hypoxia provoked haematological adaptations in healthy seniors: hypoxic pattern may hold the key

Abstract

Purpose

The purpose of this single-blind, repeated measures study was to investigate the effect of two hypoxic patterns, continuous or intermittent on key markers of haematological adaptation, stress and cardiac damage in healthy senior participants.

Methods

Fifteen healthy senior participants each followed a three-phase protocol over 3 consecutive weeks: (1) 5 consecutive days of breathing room air without a mask (2) 5 days of normoxic mask breathing (sham, FiO2 = 21%) (3) 5 days of intermittent hypoxia (IH) tailored to achieve a mean peripheral oxygen saturation (SpO2) of 85% during ~ 70 min of cumulative exposure to hypoxia. After a 5-month washout period, participants were recalled to undertake continuous hypoxia (CH, SpO2 = 85%, ~ 70 min). The red blood cell count (RBCc), haemoglobin concentration ([Hb]), haematocrit (Hct), percentage of reticulocytes (% Retics), secretory immunoglobulin A (S-IgA), cortisol, cardiac troponin T (cTnT) and the OFF-score (i.e. \(\left[\mathrm{H}\mathrm{b}\right]\bullet 10-60\bullet \sqrt{\% \mathrm{R}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}}\)) were measured.

Results

RBCc only increased by day 5 of IH treatment compared to day 5 baseline values (+ 7.7%, p < 0.01) and day 5 Sham values (+ 12.9%, p < 0.01). [Hb] only increased by day 5 of IH treatment compared to day 5 baseline values (+ 14.7%, p < 0.01) and day 5 Sham values (+ 14.3%, p < 0.01). Hct (+ 12.7%, p < 0.01) and the OFF-score (p < 0.05) increased only during the final day of IH treatment. No difference was observed in S-IgA, cortisol or cTnT following IH or CH.

Conclusion

These results revealed that inherent differences in the IH and CH hypoxic patterns could provide crucial components required to trigger hematological changes in senior individuals, without eliciting immunological stress responses or damaging the myocardium.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

CH:

Continuous hypoxia

cTnT:

Cardiac troponin T

EPO:

Erythropoietin

FiO2 :

Fraction of inspired oxygen

Hct:

Haematocrit

[Hb]:

Haemoglobin concentration

HIF:

Hypoxia-inducible factors

IH:

Intermittent hypoxia

PiO2 :

Inspired oxygen partial pressure

RBCc :

Red blood cell count

% Retics:

Percentage of reticulocytes

S-IgA:

Secretory immunoglobulin A

SpO2 :

Peripheral oxygen saturation

References

  1. Beidleman BA, Muza SR, Fulco CS, Cymerman A, Staab JE, Sawka MN, Lewis SF, Skrinar GS (2006) White blood cell and hormonal responses to 4300 m altitude before and after intermittent altitude exposure. Clin Sci 111(2):163–169

    Article  Google Scholar 

  2. Burtscher M (2013) Exercise limitations by the oxygen delivery and utilization systems in aging and disease: coordinated adaptation and deadaptation of the lung-heart muscle axis—a mini-review. Gerontology 59(4):289–296. https://doi.org/10.1159/000343990

    Article  PubMed  Google Scholar 

  3. Burtscher M, Pachinger O, Ehrenbourg I, Mitterbauer G, Faulhaber M, Puhringer R, Tkatchouk E (2004) Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int J Cardiol 96(2):247–254

    Article  Google Scholar 

  4. Butcher SJ, Jones RL, Eves ND, Petersen SR (2006) Work of breathing is increased during exercise with the self-contained breathing apparatus regulator. Appl Physiol Nutr Metab 31(6):693–701

    Article  Google Scholar 

  5. Costalat G, Lemaitre F, Tobin B, Renshaw G (2017) Intermittent hypoxia revisited: a promising non-pharmaceutical strategy to reduce cardio-metabolic risk factors? Sleep Breath 2(10):17–1459

    Google Scholar 

  6. Dharmarajan TS, Avula S, Norkus EP (2006) Anemia increases risk for falls in hospitalized older adults: an evaluation of falls in 362 hospitalized, ambulatory, long-term care, and community patients. J Am Med Dir Assoc 7(5):287–293

    CAS  Article  Google Scholar 

  7. Di Giulio C, Bianchi G, Cacchio M, Artese L, Piccirilli M, Verratti V, Valerio R, Iturriaga R (2006) Neuroglobin, a new oxygen binding protein is present in the carotid body and increases after chronic intermittent hypoxia. In: Hayashida Y, Gonzalez C, Kondo H (eds) The arterial chemoreceptors. Advances in experimental medicine ands biology, vol 580. Springer, Boston

    Google Scholar 

  8. Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37(2):247–248

    CAS  Article  Google Scholar 

  9. Dubois AB, Botelho SY, Comroe JH Jr (1956) A new method for measuring airway resistance in man using a body plethysmograph: values in normal subjects and in patients with respiratory disease. J Clin Investig 35(3):327–335. https://doi.org/10.1172/jci103282

    CAS  Article  PubMed  Google Scholar 

  10. Eckardt KU, Boutellier U, Kurtz A, Schopen M, Koller EA, Bauer C (1989) Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol 66(4):1785–1788. https://doi.org/10.1152/jappl.1989.66.4.1785

    CAS  Article  PubMed  Google Scholar 

  11. Gore CJ, Parisotto R, Ashenden MJ, Stray-Gundersen J, Sharpe K, Hopkins W, Emslie KR, Howe C, Trout GJ, Kazlauskas R, Hahn AG (2003) Second-generation blood tests to detect erythropoietin abuse by athletes. Haematologica 88(3):333–344

    PubMed  Google Scholar 

  12. Haase VH (2013) Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev 27(1):41–53. https://doi.org/10.1016/j.blre.2012.12.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Harshman SW, Geier BA, Fan M, Rinehardt S, Watts BS, Drummond LA, Preti G, Phillips JB, Ott DK, Grigsby CC (2015) The identification of hypoxia biomarkers from exhaled breath under normobaric conditions. J Breath Res 9(4):1752–7155

    Article  Google Scholar 

  14. Hauser A, Troesch S, Saugy JJ, Schmitt L, Cejuela-Anta R, Faiss R, Steiner T, Robinson N, Millet GP, Wehrlin JP (2017) Individual hemoglobin mass response to normobaric and hypobaric "live high-train low": a one-year crossover study. J Appl Physiol 123(2):387–393

    CAS  Article  Google Scholar 

  15. Izaks GJ, Westendorp RG, Knook DL (1999) The definition of anemia in older persons. JAMA 281(18):1714–1717

    CAS  Article  Google Scholar 

  16. Jelkmann W (2011) Regulation of erythropoietin production. J Physiol 589(Pt 6):1251–1258

    CAS  Article  Google Scholar 

  17. Khanna K, Mishra KP, Ganju L, Kumar B, Singh SB (2018) High-altitude-induced alterations in gut-immune axis: a review. Int Rev Immunol 37(2):119–126. https://doi.org/10.1080/08830185.2017.1407763

    CAS  Article  PubMed  Google Scholar 

  18. Kim TS, Hanak M, Trampont PC, Braciale TJ (2015) Stress-associated erythropoiesis initiation is regulated by type 1 conventional dendritic cells. J Clin Investig 125(10):3965–3980

    Article  Google Scholar 

  19. Levine BD, Stray-Gundersen J (1997) "Living high-training low": effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 83(1):102–112

    CAS  Article  Google Scholar 

  20. Lobigs LM, Sharpe K, Garvican-Lewis LA, Gore CJ, Peeling P, Dawson B, Schumacher YO (2017) The athlete's hematological response to hypoxia: a meta-analysis on the influence of altitude exposure on key biomarkers of erythropoiesis. Am J Hematol 93(1):74–83. https://doi.org/10.1002/ajh.24941

    CAS  Article  PubMed  Google Scholar 

  21. Locatelli F, Del Vecchio L (2014) Haemoglobin levels and health-related quality of life: a neglected hard end point. Nephrol Dial Transplant 29(7):1272–1274. https://doi.org/10.1093/ndt/gfu059

    Article  PubMed  Google Scholar 

  22. Lucca U, Tettamanti M, Mosconi P, Apolone G, Gandini F, Nobili A, Tallone MV, Detoma P, Giacomin A, Clerico M, Tempia P, Guala A, Fasolo G, Riva E (2008) Association of mild anemia with cognitive, functional, mood and quality of life outcomes in the elderly: the “Health and Anemia” study. PLoS ONE 3(4):e1920. https://doi.org/10.1371/journal.pone.0001920

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Lundby C, Millet GP, Calbet JA, Bartsch P, Subudhi AW (2012) Does 'altitude training' increase exercise performance in elite athletes? Br J Sports Med 46(11):792–795

    Article  Google Scholar 

  24. Mackenzie R, Maxwell N, Castle P, Brickley G, Watt P (2011) Acute hypoxia and exercise improve insulin sensitivity (SI2*) in individuals with type 2 diabetes. Diabetes Metab Res Rev 27(1):94–101. https://doi.org/10.1002/dmrr.1156

    CAS  Article  PubMed  Google Scholar 

  25. Michiels C, Tellier C, Feron O (2016) Cycling hypoxia: a key feature of the tumor microenvironment. Biochimica et Biophysica Acta Rev Cancer 1:76–86. https://doi.org/10.1016/j.bbcan.2016.06.004

    CAS  Article  Google Scholar 

  26. Millet GP, Brocherie F, Girard O, Wehrlin JP, Troesch S, Hauser A, Steiner T, Peltonen JE, Rusko HK, Constantini K, Fulton TJ, Hursh DG, Noble TJ, Paris HL, Wiggins CC, Chapman RF, Levine BD, Kumar VH, Schmidt WF (2016) Commentaries on viewpoint: time for a new metric for hypoxic dose ? J Appl Physiol (1985) 121(1):356–358. https://doi.org/10.1152/japplphysiol.00460.2016

    Article  Google Scholar 

  27. Montero D, Lundby C (2019) Arterial oxygen content regulates plasma erythropoietin independent of arterial oxygen tension: a blinded crossover study. Kidney Int 95(1):173–177. https://doi.org/10.1016/j.kint.2018.09.015

    CAS  Article  PubMed  Google Scholar 

  28. Muza SR, Beidleman BA, Fulco CS (2010) Altitude preexposure recommendations for inducing acclimatization. High Alt Med Biol 11(2):87–92

    Article  Google Scholar 

  29. Navarrete-Opazo A, Mitchell GS (2014) Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol 307(10):R1181–R1197

    CAS  Article  Google Scholar 

  30. Pottgiesser T, Sottas PE, Echteler T, Robinson N, Umhau M, Schumacher YO (2011) Detection of autologous blood doping with adaptively evaluated biomarkers of doping: a longitudinal blinded study. Transfusion 51(8):1707–1715

    Article  Google Scholar 

  31. Ramos-Campo DJ, Martinez-Sanchez F, Esteban-Garcia P, Rubio-Arias JA, Clemente-Suarez VJ, Jimenez-Diaz JF (2015) The effects of intermittent hypoxia training on hematological and aerobic performance in triathletes. Acta Physiol Hung 102(4):409–418

    CAS  Article  Google Scholar 

  32. Renshaw G, Nikinmaa M (2007) Oxygen sensors of the peripheral and central nervous system. In: Johnson D (ed) Handbook of neurochemistry and molecular neurobiology, vol 20. Springer, New York

    Google Scholar 

  33. Richalet JP, Gore CJ (2008) Live and/or sleep high:train low, using normobaric hypoxia. Scand J Med Sci Sports 1:29–37

    Article  Google Scholar 

  34. Rodriguez FA, Iglesias X, Feriche B, Calderon-Soto C, Chaverri D, Wachsmuth NB, Schmidt W, Levine BD (2015) Altitude training in elite swimmers for sea level performance (Altitude Project). Med Sci Sports Exerc 47(9):1965–1978

    Article  Google Scholar 

  35. Schmidt W, Prommer N (2010) Impact of alterations in total hemoglobin mass on VO2max. Exerc Sport Sci Rev 38(2):68–75

    Article  Google Scholar 

  36. Schütz F, Zollinger A (2018) ABPS: an R package for calculating the abnormal blood profile score. Front Physiol 9:1638

    Article  Google Scholar 

  37. Serebrovskaya TV (2002) Intermittent hypoxia research in the former soviet union and the commonwealth of independent states: history and review of the concept and selected applications. High Alt Med Biol 3(2):205–221

    Article  Google Scholar 

  38. Serebrovskaya TV, Nosar VI, Bratus LV, Gavenauskas BL, Mankovska IM (2013) Tissue oxygenation and mitochondrial respiration under different modes of intermittent hypoxia. High Alt Med Biol 14(3):280–288

    CAS  Article  Google Scholar 

  39. Shatilo VB, Korkushko OV, Ischuk VA, Downey HF, Serebrovskaya TV (2008) Effects of intermittent hypoxia training on exercise performance, hemodynamics, and ventilation in healthy senior men. High Alt Med Biol 9(1):43–52

    Article  Google Scholar 

  40. Torpel A, Peter B, Hamacher D, Schega L (2019) Dose-response relationship of intermittent normobaric hypoxia to stimulate erythropoietin in the context of health promotion in young and old people. Eur J Appl Physiol 11(10):019–04096

    Google Scholar 

  41. Turner G, Gibson OR, Watt PW, Pringle JSM, Richardson AJ, Maxwell NS (2017) The time course of endogenous erythropoietin, IL-6, and TNFalpha in response to acute hypoxic exposures. Scand J Med Sci Sports 27(7):714–723

    CAS  Article  Google Scholar 

  42. Verges S, Chacaroun S, Godin-Ribuot D, Baillieul S (2015) Hypoxic conditioning as a new therapeutic modality. Front Pediatr. https://doi.org/10.3389/fped.2015.00058

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wahl P, Schmidt A, Achtzehn S, Bloch W, Mester J (2013) Responses of angiogenic growth factors to exercise, to hypoxia and to exercise under hypoxic conditions. Int J Sports Med 34(02):95–100

    CAS  PubMed  Google Scholar 

  44. Wang JS, Chen LY, Fu LL, Chen ML, Wong MK (2007) Effects of moderate and severe intermittent hypoxia on vascular endothelial function and haemodynamic control in sedentary men. Eur J Appl Physiol 100(2):127–135

    CAS  Article  Google Scholar 

  45. Wang Y, Liu X, Xie B, Yuan H, Zhang Y, Zhu J (2020) The NOTCH1-dependent HIF1α/VGLL4/IRF2BP2 oxygen sensing pathway triggers erythropoiesis terminal differentiation. Redox Biol 28:101313. https://doi.org/10.1016/j.redox.2019.101313

    CAS  Article  PubMed  Google Scholar 

  46. Zamboni V, Cesari M, Zuccala G, Onder G, Woodman RC, Maraldi C, Ranzini M, Volpato S, Pahor M, Bernabei R (2006) Anemia and cognitive performance in hospitalized older patients: results from the GIFA study. Int J Geriatr Psychiatry 21(6):529–534

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Biomedtech Australia Pty. Ltd., the Heart Foundation Research Centre Griffith University, and the Griffith Health Institute for generously supporting this independent investigation. We greatly appreciated the opportunity to borrow hypoxicators from Oleg Bassovitch, Biomedtech (GO2Altitude®). We are grateful to the participants for their enthusiastic involvement in this study, to Taryn Mann for quantifying troponin T to Dr. Clare Minahan and Dr. Mike Steele for statistical advice as well as to Dr. Glenn Harrison for insightful comments on drafts of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gillian M. C. Renshaw.

Ethics declarations

Conflict of Interest

The authors declare that there was no conflict of interest and that the results of the present study do not constitute endorsement of any specific equipment for hypoxia delivery.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Susan Hopkins.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tobin, B., Costalat, G. & Renshaw, G.M.C. Intermittent not continuous hypoxia provoked haematological adaptations in healthy seniors: hypoxic pattern may hold the key. Eur J Appl Physiol 120, 707–718 (2020). https://doi.org/10.1007/s00421-020-04310-y

Download citation

Keywords

  • Hypoxic pattern
  • Continuous hypoxia
  • Intermittent hypoxia
  • Haematology
  • Cardiac troponin T
  • S-IgA
  • Cortisol
  • Human
  • Seniors