Skip to main content

Advertisement

Log in

Cerebrovascular haemodynamics during isometric resistance exercise with and without the Valsalva manoeuvre

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To examine the interactive effects of VM and isometric resistance exercise on cerebral haemodynamics.

Methods

Eleven healthy participants (mean ± SD 28 ± 9 years; 2 females) completed 20-s bilateral isometric leg extension at 50% of maximal voluntary contraction with continued ventilation (RE), a 20-s VM at mouth pressure of 40 mmHg (VM), and a combination (RE + VM), in randomised order. Mean beat-to-beat blood velocity in the posterior (PCAvmean) and middle cerebral arteries (MCAvmean), vertebral artery blood flow, end-tidal partial pressure of CO2 and mean arterial pressure (MAP) were measured. RE data were time aligned to RE + VM and analysed according to standard VM phases.

Results

Interaction effects (VM phase × condition) were observed for MCAvmean, PCAvmean, vertebral artery blood flow and MAP (all ≤ 0.010). Phase I MCAvmean was greatest for RE [88 ± 19, vs. 71 ± 11 and 78 ± 12 cm s−1 for VM (P = 0.008) and RE + VM (P = 0.021), respectively]. Greater increases in MCAvmean than PCAvmean occurred in phase I of RE only (24 ± 15% vs. 16 ± 16%, post hoc P = 0.044). In phase IIb, MAP was lower in RE than RE + VM (115 ± 15 vs. 138 ± 21 mmHg, P = 0.004), but did not reduce MCAvmean (78 ± 8 vs. 79 ± 9 cm s−1, P = 0.579) or PCAvmean (45 ± 11 vs .46 ± 11 cm s−1, P = 0.617). Phase IIb MCAvmean and PCAvmean was lowest in VM (66 ± 6 and 39 ± 8 cm s−1, respectively, all P < 0.001), whereas in Phase IV, MCAvmean, PCAvmean and MAP were greater in VM than in RE and RE + VM (all P < 0.020).

Conclusion

RE and RE + VM produce similar cerebrovascular responses despite different MAP profiles. However, the VM produced the greatest cerebrovascular challenge afterward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABP:

Arterial blood pressure

DMCAv:

Diastolic middle cerebral artery blood velocity

DPCAv:

Diastolic posterior cerebral artery blood velocity

CCP:

Critical closing pressure

CPP:

Cerebral perfusion pressure

CVCi:

Cerebrovascular conductance index

DBP:

Diastolic blood pressure

HR:

Heart rate

ICA:

Internal carotid artery

ICP:

Intracranial pressure

MAP:

Mean arterial pressure

MCA:

Middle cerebral artery

MCAv:

Middle cerebral artery blood velocity

MCAvmean :

Mean middle cerebral artery blood velocity

MVC:

Maximal voluntary contraction

PCA:

Posterior cerebral artery

PCAv:

Posterior cerebral artery blood velocity

PCAvmean :

Mean posterior cerebral artery blood velocity

PETCO2 :

Partial pressure of end tidal carbon dioxide

Pi:

Pulsatility index

PI:

Phase 1

PII:

Phase 2

PIIa:

Phase 2a

PIII:

Phase 3

PIV:

Phase IV

RE:

Resistance exercise

RE + VM:

Resistance exercise with concurrent Valsalva manoeuvre

SMCAv:

Systolic middle cerebral artery blood velocity

SPCAv:

Systolic posterior cerebral artery blood velocity

VA:

Vertebral artery

VM:

Valsalva manoeuvre

References

  • Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57(6):769–774

    CAS  PubMed  Google Scholar 

  • Abidi S, Nili M, Serna S, Kim S, Hazlett C, Edgell H (2017) Influence of sex, menstrual cycle, and oral contraceptives on cerebrovascular resistance and cardiorespiratory function during Valsalva or standing. J Appl Physiol 123(2):375–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aries MJ, Elting JW, De Keyser J, Kremer BP, Vroomen PC (2010) Cerebral autoregulation in stroke: a review of transcranial Doppler studies. Stroke 41(11):2697–2704

    PubMed  Google Scholar 

  • Billinger SA, Arena R, Bernhardt J, Eng JJ, Franklin BA, Johnson CM, MacKay-Lyons M, Macko RF, Mead GE, Roth EJ (2014) Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 45(8):2532–2553

    PubMed  Google Scholar 

  • Brassard P, Ferland-Dutil H, Smirl JD, Paquette M, Le Blanc O, Malenfant S, Ainslie PN (2017a) Evidence for hysteresis in the cerebral pressure-flow relationship in healthy men. Am J Physiol Heart Circ Physiol 312(4):H701–H704

    PubMed  Google Scholar 

  • Brassard P, Tymko MM, Ainslie PN (2017b) Sympathetic control of the brain circulation: appreciating the complexities to better understand the controversy. Auton Neurosci 207:37–47

    PubMed  Google Scholar 

  • Braz ID, Scott C, Simpson LL, Springham EL, Tan BW, Balanos GM, Fisher JP (2014) Influence of muscle metaboreceptor stimulation on middle cerebral artery blood velocity in humans. Exp Physiol 99(11):1478–1487

    PubMed  Google Scholar 

  • Cohen J (2013) Statistical power analysis for the behavioral sciences. Routledge, Boca Raton

    Google Scholar 

  • Compton D, Hill P, Sinclair J (1973) Weight-lifters' blackout. Lancet 302(7840):1234–1237

    Google Scholar 

  • Convertino VA, Ratliff DA, Doerr DF, Ludwig DA, Muniz GW, Benedetti E, Chavarria J, Koreen S, Nguyen C, Wang J (2003) Effects of repeated Valsalva maneuver straining on cardiac and vasoconstrictive baroreflex responses. Aviat Space Environ Med 74(3):212–219

    PubMed  Google Scholar 

  • Coverdale NS, Gati JS, Opalevych O, Perrotta A, Shoemaker JK (2014) Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia. J Appl Physiol 117(10):1090–1096

    PubMed  Google Scholar 

  • Dawson SL, Panerai RB, Potter JF (1999) Critical closing pressure explains cerebral hemodynamics during the Valsalva maneuver. J Appl Physiol 86(2):675–680

    CAS  PubMed  Google Scholar 

  • de Riva N, Budohoski KP, Smielewski P, Kasprowicz M, Zweifel C, Steiner LA, Reinhard M, Fábregas N, Pickard JD, Czosnyka M (2012) Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocrit Care 17(1):58–66

    PubMed  Google Scholar 

  • DeVan AE, Anton MM, Cook JN, Neidre DB, Cortez-Cooper MY, Tanaka H (2005) Acute effects of resistance exercise on arterial compliance. J Appl Physiol 98(6):2287–2291

    PubMed  Google Scholar 

  • Edwards MR, Martin DH, Hughson RL (2002) Cerebral hemodynamics and resistance exercise. Med Sci Sports Exerc 34(7):1207–1211

    PubMed  Google Scholar 

  • Fernandes IA, Mattos JD, Campos MO, Machado AC, Rocha MP, Rocha NG, Vianna LC, Nobrega AC (2016) Selective α1-adrenergic blockade disturbs the regional distribution of cerebral blood flow during static handgrip exercise. Am J Physiol Heart Circ Physiol 310(11):H1541–H1548

    PubMed  Google Scholar 

  • Flemale A, Gillard C, Dierckx J (1988) Comparison of central venous, oesophageal and mouth occlusion pressure with water-filled catheters for estimating pleural pressure changes in healthy adults. Eur Respir J 1(1):51–57

    CAS  PubMed  Google Scholar 

  • Flück D, Ainslie PN, Bain AR, Wildfong KW, Morris LE, Fisher JP (2017) Extra-and intracranial blood flow regulation during the cold pressor test: influence of age. J Appl Physiol 123(5):1071–1080

    PubMed  PubMed Central  Google Scholar 

  • Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP (2011) American College of Sports Medicine position stand Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–1359

    PubMed  Google Scholar 

  • Gisolf J, Van Lieshout J, Van Heusden K, Pott F, Stok W, Karemaker J (2004) Human cerebral venous outflow pathway depends on posture and central venous pressure. J Physiol 560(1):317–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg H, Elisberg E, Katz L (1952) The effects of the Valsalva-like maneuver upon the circulation in normal individuals and patients with mitral stenosis. Circulation 5(1):38–47

    CAS  PubMed  Google Scholar 

  • Gosling R, King D (1974) The role of measurement in peripheral vascular surgery: arterial assessment by Doppler-shift ultrasound. Proc R Soc Med 67:447–449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greenfield JC Jr, Rembert JC, Tindall GT (1984) Transient changes in cerebral vascular resistance during the Valsalva maneuver in man. Stroke 15(1):76–79

    PubMed  Google Scholar 

  • Hackett DA, Chow C-M (2013) The Valsalva maneuver: its effect on intra-abdominal pressure and safety issues during resistance exercise. J Strength Cond Res 27(8):2338–2345

    PubMed  Google Scholar 

  • Hamilton W, Woodbury R, Harper H (1944) Arterial, cerebrospinal and venous pressures in man during cough and strain. Am J Physiol 141(1):42–50

    Google Scholar 

  • Haykowsky MJ, Eves ND, Warburton DE, Findlay MJ (2003) Resistance exercise, the Valsalva maneuver, and cerebrovascular transmural pressure. Med Sci Sports Exerc 35(1):65–68

    PubMed  Google Scholar 

  • Heffernan KS, Jae SY, Edwards DG, Kelly EE, Fernhall B (2007) Arterial stiffness following repeated Valsalva maneuvers and resistance exercise in young men. Appl Physiol Nutr Metab 32(2):257–264

    PubMed  Google Scholar 

  • Hirasawa A, Sato K, Yoneya M, Sadamoto T, Bailey DM, Ogoh S (2016) Heterogeneous regulation of brain blood flow during low-intensity resistance exercise. Med Sci Sports Exerc 48(9):1829–1834

    CAS  PubMed  Google Scholar 

  • Imms F, Russo F, Iyawe V, Segal M (1998) Cerebral blood flow velocity during and after sustained isometric skeletal muscle contractions in man. Clin Sci 94(4):353–358

    CAS  PubMed  Google Scholar 

  • Jorgensen L, Perko M, Hanel B, Schroeder T, Secher N (1992a) Middle cerebral artery flow velocity and blood flow during exercise and muscle ischemia in humans. J Appl Physiol 72(3):1123–1132

    CAS  PubMed  Google Scholar 

  • Jorgensen LG, Perko G, Secher NH (1992b) Regional cerebral artery mean flow velocity and blood flow during dynamic exercise in humans. J Appl Physiol 73(5):1825–1830

    CAS  PubMed  Google Scholar 

  • Kim Y-S, Krogh-Madsen R, Rasmussen P, Plomgaard P, Ogoh S, Secher NH, Van Lieshout JJ (2007) Effects of hyperglycemia on the cerebrovascular response to rhythmic handgrip exercise. Am J Physiol Heart Circ Physiol 293(1):H467–H473

    CAS  PubMed  Google Scholar 

  • Kraemer WJ, Ratamess NA (2004) Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc 36(4):674–688

    PubMed  Google Scholar 

  • Lefferts WK, Augustine JA, Heffernan KS (2014) Effect of acute resistance exercise on carotid artery stiffness and cerebral blood flow pulsatility. Front Physiol 5:101

    PubMed  PubMed Central  Google Scholar 

  • Linkis P, Jorgensen LG, Olesen H, Madsen P, Lassen N, Secher N (1995) Dynamic exercise enhances regional cerebral artery mean flow velocity. J Appl Physiol 78(1):12–16

    CAS  PubMed  Google Scholar 

  • Llwyd O, Panerai RB, Robinson TG (2017) Effects of dominant and non-dominant passive arm manoeuvres on the neurovascular coupling response. Eur J Appl Physiol 117(11):2191–2199

    PubMed  Google Scholar 

  • MacDougall J, Tuxen D, Sale D, Moroz J, Sutton J (1985) Arterial blood pressure response to heavy resistance exercise. J Appl Physiol 58(3):785–790

    CAS  PubMed  Google Scholar 

  • MacDougall J, McKelvie R, Moroz D, Sale D, McCartney N, Buick F (1992) Factors affecting blood pressure during heavy weight lifting and static contractions. J Appl Physiol 73(4):1590–1597

    CAS  PubMed  Google Scholar 

  • McNeil CJ, Allen MD, Olympico E, Shoemaker JK, Rice CL (2015) Blood flow and muscle oxygenation during low, moderate, and maximal sustained isometric contractions. Am J Physiol Regul Integr Comp Physiol 309(5):R475–R481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan BJ, Denahan T, Ebert TJ (1993) Neurocirculatory consequences of negative intrathoracic pressure vs asphyxia during voluntary apnea. J Appl Physiol 74(6):2969–2975

    CAS  PubMed  Google Scholar 

  • Ogoh S, Moralez G, Washio T, Sarma S, Hieda M, Romero SA, Cramer MN, Shibasaki M, Crandall CG (2017) Effect of increases in cardiac contractility on cerebral blood flow in humans. Am J Physiol Heart Circ Physiol 313(6):H1155–H1161

    PubMed  PubMed Central  Google Scholar 

  • Panerai R (2003) The critical closing pressure of the cerebral circulation. Med Eng Phys 25(8):621–632

    CAS  PubMed  Google Scholar 

  • Panerai R, Kelsall A, Rennie JM, Evans D (1995) Estimation of critical closing pressure in the cerebral circulation of newborns. Neuropediatrics 26(03):168–173

    CAS  PubMed  Google Scholar 

  • Perry BG, Cotter JD, Mejuto G, Mündel T, Lucas SJ (2014a) Cerebral hemodynamics during graded Valsalva maneuvers. Front Physiol 5:1–7

    Google Scholar 

  • Perry BG, Mündel T, Cochrane DJ, Cotter JD, Lucas SJ (2014b) The cerebrovascular response to graded Valsalva maneuvers while standing. Physiol Rep 2(2):e00233

    PubMed  PubMed Central  Google Scholar 

  • Perry BG, Schlader ZJ, Barnes MJ, Cochrane DJ, Lucas SJ, Mündel T (2014c) Hemodynamic response to upright resistance exercise: effect of load and repetition. Med Sci Sports Exerc 46:479–487

    PubMed  Google Scholar 

  • Perry BG, Cotter JD, Korad S, Lark S, Labrecque L, Brassard P, Paquette M, Le Blanc O, Lucas SJE (2019) Implications of habitual endurance and resistance exercise for dynamic cerebral autoregulation. Exp Physiol. https://doi.org/10.1113/EP087675

    Article  PubMed  Google Scholar 

  • Pott F, van Lieshout JJ, Ide K, Madsen P, Secher NH (2000) Middle cerebral artery blood velocity during a Valsalva maneuver in the standing position. J Appl Physiol 88(5):1545–1550

    CAS  PubMed  Google Scholar 

  • Pott F, Van Lieshout JJ, Ide K, Madsen P, Secher NH (2003) Middle cerebral artery blood velocity during intense static exercise is dominated by a Valsalva maneuver. J Appl Physiol 94(4):1335–1344

    PubMed  Google Scholar 

  • Sato K, Fisher JP, Seifert T, Overgaard M, Secher NH, Ogoh S (2012) Blood flow in internal carotid and vertebral arteries during orthostatic stress. Exp Physiol 97(12):1272–1280

    PubMed  Google Scholar 

  • Stewart JM, Montgomery LD, Glover JL, Medow MS (2007) Changes in regional blood volume and blood flow during static handgrip. Am J Physiol Heart Circ Physiol 292(1):H215–H223

    CAS  PubMed  Google Scholar 

  • Thomas KN, Lewis NC, Hill BG, Ainslie PN (2015) Technical recommendations for the use of carotid duplex ultrasound for the assessment of extracranial blood flow. Am J Physiol Regul Integr Comp Physiol 309(7):R707–R720

    CAS  PubMed  Google Scholar 

  • Tiecks FP, Lam AM, Matta BF, Strebel S, Douville C, Newell DW (1995) Effects of the Valsalva maneuver on cerebral circulation in healthy adults: a transcranial Doppler study. Stroke 26(8):1386–1392

    CAS  PubMed  Google Scholar 

  • Tiecks FP, Douville C, Byrd S, Lam AM, Newell DW (1996) Evaluation of impaired cerebral autoregulation by the Valsalva maneuver. Stroke 27(7):1177–1182

    CAS  PubMed  Google Scholar 

  • Tzeng YC, Willie CK, Atkinson G, Lucas SJE, Wong A, Ainslie PN (2010) Cerebrovascular regulation during transient hypotension and hypertension in humans. Hypertension 56(2):268–273

    CAS  PubMed  Google Scholar 

  • Verbree J, Bronzwaer A, van Buchem MA, Daemen MJ, van Lieshout JJ, van Osch MJ (2017) Middle cerebral artery diameter changes during rhythmic handgrip exercise in humans. J Cereb Blood Flow Metab 37(8):2921–2927

    CAS  PubMed  Google Scholar 

  • Washio T, Sasaki H, Ogoh S (2017) Transcranial Doppler-determined change in posterior cerebral artery blood flow velocity does not reflect vertebral artery blood flow during exercise. Am J Physiol Heart Circ Physiol 312(4):H827–H831

    PubMed  Google Scholar 

  • Washio T, Vranish JR, Kaur J, Young BE, Katayama K, Fadel PJ, Ogoh S (2018) Acute reduction in posterior cerebral blood flow following isometric handgrip exercise is augmented by lower body negative pressure. Physiol Rep 6(20):e13886

    PubMed  PubMed Central  Google Scholar 

  • Willie C, Colino F, Bailey D, Tzeng Y, Binsted G, Jones L, Haykowsky M, Bellapart J, Ogoh S, Smith K (2011) Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function. J Neurosci Methods 196:221–237

    CAS  PubMed  Google Scholar 

  • Zhang R, Zuckerman JH, Giller CA, Levine BD (1998) Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Physiol Heart Circ Physiol 274(1):233–241

    Google Scholar 

  • Zhang R, Crandall CG, Levine BD (2004) Cerebral hemodynamics during the Valsalva maneuver insights from ganglionic blockade. Stroke 35(4):843–847

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Massey University School of Health Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Experiment was performed at the School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand. BGP, TD, KNT, LW, and JC were involved in conception and design of research. All authors were involved in conducting the research. BGP, KNT, LW, TDG, and JC were involved in data analysis and interpretation. All authors edited and revised manuscript with all authors approving the final version.

Corresponding author

Correspondence to Blake G. Perry.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Keith Phillip George.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perry, B.G., De Hamel, T., Thomas, K.N. et al. Cerebrovascular haemodynamics during isometric resistance exercise with and without the Valsalva manoeuvre. Eur J Appl Physiol 120, 467–479 (2020). https://doi.org/10.1007/s00421-019-04291-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-019-04291-7

Keywords

Navigation