Adhihetty PJ, Uguccioni G, Leick L et al (2009) The role of PGC-1α on mitochondrial function and apoptotic susceptibility in muscle. Am J Physiol Cell Physiol 297:C217–C225. https://doi.org/10.1152/ajpcell.00070.2009
CAS
Article
PubMed
Google Scholar
Ballmann C, McGinnis G, Peters B et al (2014) Exercise-induced oxidative stress and hypoxic exercise recovery. Eur J Appl Physiol 114:725–733. https://doi.org/10.1007/s00421-013-2806-5
CAS
Article
PubMed
Google Scholar
Ballmann C, Tang Y, Bush Z, Rowe GC (2016) Adult expression of PGC-1α and -1β in skeletal muscle is not required for endurance exercise-induced enhancement of exercise capacity. Am J Physiol-Endocrinol Metab 311:E928–E938. https://doi.org/10.1152/ajpendo.00209.2016
Article
PubMed
PubMed Central
Google Scholar
Bergstrom J (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35:609–616
CAS
Article
PubMed
Google Scholar
Christensen PM, Gunnarsson TP, Thomassen M et al (2015) Unchanged content of oxidative enzymes in fast-twitch muscle fibers and VO2 kinetics after intensified training in trained cyclists. Physiol Rep. https://doi.org/10.14814/phy2.12428
Article
PubMed
PubMed Central
Google Scholar
Crilly MJ, Tryon LD, Erlich AT, Hood DA (2016) The role of Nrf2 in skeletal muscle contractile and mitochondrial function. J Appl Physiol 121:730–740. https://doi.org/10.1152/japplphysiol.00042.2016
CAS
Article
PubMed
PubMed Central
Google Scholar
Done AJ, Newell MJ, Traustadóttir T (2017) Effect of exercise intensity on Nrf2 signalling in young men. Free Radic Res 51:646–655. https://doi.org/10.1080/10715762.2017.1353689
CAS
Article
PubMed
Google Scholar
Edgett BA, Foster WS, Hankinson PB et al (2013) Dissociation of increases in PGC-1α and its regulators from exercise intensity and muscle activation following acute exercise. PLoS ONE 8:e71623. https://doi.org/10.1371/journal.pone.0071623
CAS
Article
PubMed
PubMed Central
Google Scholar
Edgett BA, Bonafiglia JT, Baechler BL et al (2016) The effect of acute and chronic sprint-interval training on LRP130, SIRT3, and PGC-1 α expression in human skeletal muscle. Physiol Rep 4:e12879. https://doi.org/10.14814/phy2.12879
CAS
Article
PubMed
PubMed Central
Google Scholar
Fan W, He N, Lin CS et al (2018) ERRγ promotes angiogenesis, mitochondrial biogenesis, and oxidative remodeling in PGC1α/β-deficient muscle. Cell Rep 22:2521–2529. https://doi.org/10.1016/j.celrep.2018.02.047
CAS
Article
PubMed
PubMed Central
Google Scholar
Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S–890S. https://doi.org/10.3945/ajcn.110.001917
CAS
Article
PubMed
PubMed Central
Google Scholar
Freyssenet D, Berthon P, Denis C (1996) Mitochondrial biogenesis in skeletal muscle in response to endurance exercises. Arch Physiol Biochem 104:129–141. https://doi.org/10.1076/apab.104.2.129.12878
CAS
Article
PubMed
Google Scholar
Granata C, Jamnick NA, Bishop DJ (2018) Principles of exercise prescription, and how they influence exercise-induced changes of transcription factors and other regulators of mitochondrial biogenesis. Sports Med 48:1541–1559. https://doi.org/10.1007/s40279-018-0894-4
Article
PubMed
Google Scholar
Holloszy JO (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242:2278–2282
CAS
PubMed
Google Scholar
Hood DA, Tryon LD, Carter HN et al (2016) Unravelling the mechanisms regulating muscle mitochondrial biogenesis. Biochem J 473:2295–2314. https://doi.org/10.1042/BCJ20160009
CAS
Article
PubMed
Google Scholar
Hughes MC, Ramos SV, Turnbull PC, et al (2015) Mitochondrial bioenergetics and fiber type assessments in microbiopsy vs. bergstrom percutaneous sampling of human skeletal muscle. Front Physiol 10.3389/fphys.2015.00360
Islam H, Edgett BA, Gurd BJ (2018) Coordination of mitochondrial biogenesis by PGC-1α in human skeletal muscle: a re-evaluation. Metabolism 79:42–51. https://doi.org/10.1016/j.metabol.2017.11.001
CAS
Article
PubMed
Google Scholar
Islam H, Edgett BA, Bonafiglia JT et al (2019a) Repeatability of exercise-induced changes in mRNA expression and technical considerations for qPCR analysis in human skeletal muscle. Exp Physiol. https://doi.org/10.1113/EP087401
Article
PubMed
Google Scholar
Islam H, Hood DA, Gurd BJ (2019b) Looking beyond PGC-1α: Emerging regulators of exercise-induced skeletal muscle mitochondrial biogenesis and their activation by dietary compounds. Appl Physiol Nutr Metab. https://doi.org/10.1139/apnm-2019-0069
Article
PubMed
Google Scholar
Jacobs RA, Lundby C (2013) Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. J Appl Physiol 114:344–350. https://doi.org/10.1152/japplphysiol.01081.2012
CAS
Article
PubMed
Google Scholar
Joo MS, Kim WD, Lee KY et al (2016) AMPK facilitates nuclear accumulation of nrf2 by phosphorylating at serine 550. Mol Cell Biol 36:1931–1942. https://doi.org/10.1128/MCB.00118-16
Article
PubMed
PubMed Central
Google Scholar
Kemmerer ZA, Ader NR, Mulroy SS, Eggler AL (2015) Comparison of human Nrf2 antibodies: a tale of two proteins. Toxicol Lett 238:83–89. https://doi.org/10.1016/j.toxlet.2015.07.004
CAS
Article
PubMed
PubMed Central
Google Scholar
Kwak M-K, Itoh K, Yamamoto M, Kensler TW (2002) Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the Nrf2 promoter. Mol Cell Biol 22:2883–2892
CAS
Article
PubMed
PubMed Central
Google Scholar
Lai RYJ, Ljubicic V, D’souza D, Hood DA (2010) Effect of chronic contractile activity on mRNA stability in skeletal muscle. Am J Physiol-Cell Physiol 299:C155–C163. https://doi.org/10.1152/ajpcell.00523.2009
CAS
Article
PubMed
PubMed Central
Google Scholar
Larsen S, Nielsen J, Hansen CN et al (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590:3349–3360. https://doi.org/10.1113/jphysiol.2012.230185
CAS
Article
PubMed
PubMed Central
Google Scholar
Lau A, Tian W, Whitman SA, Zhang DD (2013) The predicted molecular weight of Nrf2: it is what it is not. Antioxid Redox Signal 18:91–93. https://doi.org/10.1089/ars.2012.4754
CAS
Article
PubMed
PubMed Central
Google Scholar
Leick L, Wojtaszewski JFP, Johansen ST et al (2008) PGC-1α is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. Am J Physiol-Endocrinol Metab 294:E463–E474. https://doi.org/10.1152/ajpendo.00666.2007
CAS
Article
PubMed
Google Scholar
Li T, He S, Liu S et al (2015) Effects of different exercise durations on Keap1-Nrf2-ARE pathway activation in mouse skeletal muscle. Free Radic Res 49:1269–1274. https://doi.org/10.3109/10715762.2015.1066784
CAS
Article
PubMed
Google Scholar
Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370. https://doi.org/10.1016/j.cmet.2005.05.004
CAS
Article
PubMed
Google Scholar
Linossier MT, Dormois D, Perier C et al (1997) Enzyme adaptations of human skeletal muscle during bicycle short-sprint training and detraining. Acta Physiol Scand 161:439–445. https://doi.org/10.1046/j.1365-201X.1997.00244.x
CAS
Article
PubMed
Google Scholar
Merry TL, Ristow M (2016) Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice: NFE2L2 and mitochondrial biogenesis. J Physiol 594:5195–5207. https://doi.org/10.1113/JP271957
CAS
Article
PubMed
PubMed Central
Google Scholar
Olesen J, Kiilerich K, Pilegaard H (2010) PGC-1α-mediated adaptations in skeletal muscle. Pflüg Arch Eur J Physiol 460:153–162. https://doi.org/10.1007/s00424-010-0834-0
CAS
Article
Google Scholar
Pecorella SRH, Potter JVF, Cherry AD et al (2015) The HO-1/CO system regulates mitochondrial-capillary density relationships in human skeletal muscle. Am J Physiol Lung Cell Mol Physiol 309:L857–871. https://doi.org/10.1152/ajplung.00104.2015
CAS
Article
PubMed
PubMed Central
Google Scholar
Perry CGR, Hawley JA (2018) Molecular basis of exercise-induced skeletal muscle mitochondrial biogenesis: historical advances, current knowledge, and future challenges. Cold Spring Harb Perspect Med 8:a029686. https://doi.org/10.1101/cshperspect.a029686
Article
PubMed
PubMed Central
Google Scholar
Piantadosi CA, Suliman HB (2006) Mitochondrial transcription factor A induction by redox activation of nuclear respiratory factor 1. J Biol Chem 281:324–333. https://doi.org/10.1074/jbc.M508805200
CAS
Article
PubMed
Google Scholar
Piantadosi CA, Carraway MS, Babiker A, Suliman HB (2008) Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res 103:1232–1240. https://doi.org/10.1161/01.RES.0000338597.71702.ad
CAS
Article
PubMed
PubMed Central
Google Scholar
Raleigh JP, Giles MD, Islam H et al (2018) Contribution of central and peripheral adaptations to changes in VO2max following four weeks of sprint interval training. Appl Physiol Nutr Metab. https://doi.org/10.1139/apnm-2017-0864
Article
PubMed
Google Scholar
Rhodes MA, Carraway MS, Piantadosi CA et al (2009) Carbon monoxide, skeletal muscle oxidative stress, and mitochondrial biogenesis in humans. Am J Physiol Heart Circ Physiol 297:H392–399. https://doi.org/10.1152/ajpheart.00164.2009
CAS
Article
PubMed
PubMed Central
Google Scholar
Roepstorff C, Schjerling P, Vistisen B et al (2005) Regulation of oxidative enzyme activity and eukaryotic elongation factor 2 in human skeletal muscle: influence of gender and exercise. Acta Physiol Scand 184:215–224. https://doi.org/10.1111/j.1365-201X.2005.01442.x
CAS
Article
PubMed
Google Scholar
Rowe GC, El-Khoury R, Patten IS et al (2012) PGC-1α is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle. PLoS ONE 7:e41817. https://doi.org/10.1371/journal.pone.0041817
CAS
Article
PubMed
PubMed Central
Google Scholar
Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88:611–638. https://doi.org/10.1152/physrev.00025.2007
CAS
Article
PubMed
Google Scholar
Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108
CAS
Article
PubMed
Google Scholar
Scribbans TD, Edgett BA, Bonafiglia JT et al (2017) A systematic upregulation of nuclear and mitochondrial genes is not present in the initial postexercise recovery period in human skeletal muscle. Appl Physiol Nutr Metab 42:571–578. https://doi.org/10.1139/apnm-2016-0455
CAS
Article
PubMed
Google Scholar
Tabata I (2019) Tabata training: one of the most energetically effective high-intensity intermittent training methods. J Physiol Sci JPS. https://doi.org/10.1007/s12576-019-00676-7
Article
PubMed
Google Scholar
Tebay LE, Robertson H, Durant ST et al (2015) Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 88:108–146. https://doi.org/10.1016/j.freeradbiomed.2015.06.021
CAS
Article
PubMed
PubMed Central
Google Scholar
Teran-Garcia M, Rankinen T, Koza RA et al (2005) Endurance training-induced changes in insulin sensitivity and gene expression. Am J Physiol-Endocrinol Metab 288:E1168–E1178. https://doi.org/10.1152/ajpendo.00467.2004
CAS
Article
PubMed
Google Scholar
Timmons JA, Jansson E, Fischer H, et al (2005a) Modulation of extracellular matrix genes reflects the magnitude of physiological adaptation to aerobic exercise training in humans. BMC Biol 3:19. https://doi.org/10.1186/1741-7007-3-19
CAS
Article
PubMed
PubMed Central
Google Scholar
Timmons JA, Larsson O, Jansson E et al (2005b) Human muscle gene expression responses to endurance training provide a novel perspective on Duchenne muscular dystrophy. FASEB J 19:750–760. https://doi.org/10.1096/fj.04-1980com
CAS
Article
PubMed
Google Scholar
Wang P, Li CG, Qi Z et al (2016) Acute exercise stress promotes Ref1/Nrf2 signalling and increases mitochondrial antioxidant activity in skeletal muscle. Exp Physiol 101:410–420. https://doi.org/10.1113/EP085493
CAS
Article
PubMed
Google Scholar
Winder WW, Hardie DG (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol 270:E299–304. https://doi.org/10.1152/ajpendo.1996.270.2.E299
CAS
Article
PubMed
Google Scholar