Skip to main content

One week of magnesium supplementation lowers IL-6, muscle soreness and increases post-exercise blood glucose in response to downhill running

Abstract

Purpose

Magnesium supplementation modulates glucose metabolism and inflammation, which could influence exercise performance and recovery. This study investigated the effect of magnesium intake on physiological responses and performance during eccentric exercise and recovery.

Methods

Nine male recreational runners completed a counterbalanced, double-blind, placebo-controlled, cross-over study, registered at ClinicalTrial.gov. Participants consumed low magnesium diets and were supplemented with 500 mg/day of magnesium (SUP) or placebo (CON) for 7 days prior to a 10 km downhill (− 10%) running time trial (TT), separated by a 2-week washout period. At baseline and 24 h post-TT, maximal muscle force was measured. Interleukin-6 (IL-6), soluble interleukin-6 receptor (sIL-6R) and creatine kinase (CK) were measured at rest, 0 h, 1 h and 24 h post-TT. Muscle soreness was measured at the previous times plus 48 h and 72 h post. Glucose and lactate were measured during the TT.

Results

The main effect of condition was detected for IL-6 (SUP: 1.36 ± 0.66 vs CON: 2.06 ± 1.14 pg/ml) (P < 0.05, η2 = 0.54), sIL-6R (SUP: 27,615 ± 8446 vs CON: 24,368 ± 7806 pg/ml) (P < 0.05, η2 = 0.41) and muscle soreness (P < 0.01, η2 = 0.67). Recovery of blood glucose and muscle soreness were enhanced in SUP post-TT. There were no differences in glucose and lactate during the TT, or post measures of CK and maximal muscle force.

Conclusion

Magnesium supplementation reduced the IL-6 response, enhanced recovery of blood glucose, and muscle soreness after strenuous exercise, but did not improve performance or functional measures of recovery.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

ANOVA:

Analysis of variance

CI:

Confidence interval

CK:

Creatine kinase

ES:

Effect size

IL-6:

Interleukin-6

sIL-6R:

Soluble interleukin-6 receptor

SD:

Standard deviation

TT:

Time trial

References

  1. Abdelmagid SM, Barr AE, Rico M, Amin M, Litvin J, Popoff SN et al (2012) Performance of repetitive tasks induces decreased grip strength and increased fibrogenic proteins in skeletal muscle: role of force and inflammation. PLoS ONE 7(5):e38359. https://doi.org/10.1371/journal.pone.0038359

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Baran P, Hansen S, Waetzig GH, Akbarzadeh M, Lamertz L, Huber HJ et al (2018) The balance of interleukin (IL)-6, IL-6·soluble IL-6 receptor (sIL-6R), and IL-6·sIL-6R·sgp130 complexes allows simultaneous classic and trans-signaling. J Biol Chem 293(18):6762–6775. https://doi.org/10.1074/jbc.RA117.001163

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Blancquaert L, Vervaet C, Derave W (2019) Predicting and testing bioavailability of magnesium supplements. Nutrients 11(7):1663. https://doi.org/10.3390/nu11071663

    Article  PubMed Central  Google Scholar 

  4. Bohl CH, Volpe SL (2002) Magnesium and exercise. Crit Rev Food Sci Nutr 42(6):533–563. https://doi.org/10.1080/20024091054247

    CAS  Article  PubMed  Google Scholar 

  5. Chen H-Y, Cheng F-C, Pan H-C, Hsu J-C, Wang M-F (2014) Magnesium enhances exercise performance via increasing glucose availability in the blood, muscle, and brain during exercise. PLoS ONE 9(1):e85486. https://doi.org/10.1371/journal.pone.0085486

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Chen YJ, Chen HY, Wang MF, Hsu MH, Liang WM, Cheng FC (2009) Effects of magnesium on exercise performance and plasma glucose and lactate concentrations in rats using a novel blood-sampling technique. Appl Physiol Nutr Metabol Physiologie Appliquee, Nutrition et Metabolisme 34(6):1040–1047. https://doi.org/10.1139/H09-105

    CAS  Article  Google Scholar 

  7. Cheng S-M, Yang L-L, Chen S-H, Hsu M-H, Chen I-J, Cheng F-C (2010) Magnesium sulfate enhances exercise performance and manipulates dynamic changes in peripheral glucose utilization. Eur J Appl Physiol 108(2):363–369. https://doi.org/10.1007/s00421-009-1235-y

    CAS  Article  PubMed  Google Scholar 

  8. Cohen J (1988) Statistical power analysis for the behavioral sciences. L. Erlbaum Associates, New Jersey

    Google Scholar 

  9. Cullen T, Thomas AW, Webb R, Hughes MG (2016) Interleukin-6 and associated cytokine responses to an acute bout of high-intensity interval exercise: the effect of exercise intensity and volume. Appl Physiol Nutr Metab 41(8):803–808. https://doi.org/10.1139/apnm-2015-0640

    CAS  Article  PubMed  Google Scholar 

  10. Cullen T, Thomas AW, Webb R, Phillips T, Hughes MG (2017) sIL-6R is related to weekly training mileage and psychological well-being in athletes. Med Sci Sports Exerc 49(6):1176–1183. https://doi.org/10.1249/MSS.0000000000001210

    CAS  Article  PubMed  Google Scholar 

  11. De Jongh RF, Vissers KC, Meert TF, Booij LHDJ, De Deyne CS, Heylen RJ (2003) The role of interleukin-6 in nociception and pain. Anesthes Analges 96(4):1096–1103 (table of contents)

    CAS  Article  Google Scholar 

  12. Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37(2):247–248. https://doi.org/10.1152/jappl.1974.37.2.247

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Dmitrašinović G, Pešić V, Stanić D, Plećaš-Solarović B, Dajak M, Ignjatović S (2016) ACTH, cortisol and IL-6 levels in athletes following magnesium supplementation. J Med Biochem 35(4):375–384. https://doi.org/10.1515/jomb-2016-0021

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Eston RG, Finney S, Baker S, Baltzopoulos V (1996) Muscle tenderness and peak torque changes after downhill running following a prior bout of isokinetic eccentric exercise. J Sports Sci 14(4):291–299. https://doi.org/10.1080/02640419608727714

    CAS  Article  PubMed  Google Scholar 

  15. Febbraio MA, Steensberg A, Keller C, Starkie RL, Nielsen HB, Krustrup P et al (2003) Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans. J Physiol 549(Pt 2):607–612. https://doi.org/10.1113/jphysiol.2003.042374

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Fine KD, Santa Ana CA, Porter JL, Fordtran JS (1991) Intestinal absorption of magnesium from food and supplements. J Clin Investig 88(2):396–402. https://doi.org/10.1172/JCI115317

    CAS  Article  PubMed  Google Scholar 

  17. Finstad EW, Newhouse IJ, Lukaski HC, Mcauliffe JE, Stewart CR (2001) The effects of magnesium supplementation on exercise performance. Med Sci Sports Exerc 33(3):493–498. https://doi.org/10.1097/00005768-200103000-00024

    CAS  Article  PubMed  Google Scholar 

  18. Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725

    CAS  Article  Google Scholar 

  19. Garfinkel L, Garfinkel D (1985) Magnesium regulation of the glycolytic pathway and the enzymes involved. Magnesium 4(2–3):60–72

    CAS  PubMed  Google Scholar 

  20. Glund S, Deshmukh A, Long YC, Moller T, Koistinen HA, Caidahl K et al (2007) Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle. Diabetes 56(6):1630–1637. https://doi.org/10.2337/db06-1733

    CAS  Article  PubMed  Google Scholar 

  21. Gray SR, Ratkevicius A, Wackerhage H, Coats P, Nimmo MA (2009) The effect of interleukin-6 and the interleukin-6 receptor on glucose transport in mouse skeletal muscle. Exp Physiol 94(8):899–905. https://doi.org/10.1113/expphysiol.2009.048173

    CAS  Article  PubMed  Google Scholar 

  22. Hardwick LL, Jones MR, Brautbar N, Lee DB (1990) Site and mechanism of intestinal magnesium absorption. Miner Electrolyte Metab 16(2–3):174–180

    CAS  PubMed  Google Scholar 

  23. Heffernan SM, Horner K, De Vito G, Conway GE (2019) The role of mineral and trace element supplementation in exercise and athletic performance: a systematic review. Nutrients. https://doi.org/10.3390/nu11030696

    Article  PubMed  PubMed Central  Google Scholar 

  24. Institute of Medicine U.S. (1997) Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academies, Washington, D.C. https://doi.org/10.17226/5776

  25. Kamran M, Kharazmi F, Malekzadeh K, Talebi A, Khosravi F, Soltani N (2018) Effect of long-term administration of oral magnesium sulfate and insulin to reduce streptozotocin-induced hyperglycemia in rats: the role of Akt2 and IRS1 gene expressions. Biol Trace Elem Res. https://doi.org/10.1007/s12011-018-1555-z

    Article  PubMed  Google Scholar 

  26. Kass LS, Poeira F (2015) The effect of acute vs chronic magnesium supplementation on exercise and recovery on resistance exercise, blood pressure and total peripheral resistance on normotensive adults. J Int Soc Sports Nutr 12(1):19. https://doi.org/10.1186/s12970-015-0081-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Lukaski HC (2000) Magnesium, zinc, and chromium nutriture and physical activity. Am J Clin Nutr 72(2):585S–593S. https://doi.org/10.1093/ajcn/72.2.585S

    CAS  Article  PubMed  Google Scholar 

  28. Lukaski HC, Nielsen FH (2002) Dietary magnesium depletion affects metabolic responses during submaximal exercise in postmenopausal women. J Nutr 132(5):930–935. https://doi.org/10.1093/jn/132.5.930

    CAS  Article  PubMed  Google Scholar 

  29. Mackey AL, Kjaer M, Dandanell S, Mikkelsen KH, Holm L, Døssing S et al (2007) The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans. J Appl Physiol (Bethesda, Md. : 1985) 103(2):425–431. https://doi.org/10.1152/japplphysiol.00157.2007

    CAS  Article  Google Scholar 

  30. McCoy M, Proietto J, Hargreaves M (1996) Skeletal muscle GLUT-4 and postexercise muscle glycogen storage in humans. J Appl Physiol 80(2):411–415. https://doi.org/10.1152/jappl.1996.80.2.411

    CAS  Article  PubMed  Google Scholar 

  31. Mikkelsen UR, Langberg H, Helmark IC, Skovgaard D, Andersen LL, Kjaer M, Mackey AL (2009) Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise. J Appl Physiol (Bethesda, Md. : 1985) 107(5):1600–1611. https://doi.org/10.1152/japplphysiol.00707.2009

    CAS  Article  Google Scholar 

  32. Nielsen FH, Lukaski HC (2006) Update on the relationship between magnesium and exercise. Magnes Res 19(3):180–189. https://doi.org/10.1684/mrh.2006.0060

    CAS  Article  PubMed  Google Scholar 

  33. Petersen AMW, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98(4):1154–1162. https://doi.org/10.1152/japplphysiol.00164.2004

    CAS  Article  Google Scholar 

  34. Pincus T, Bergman M, Sokka T, Roth J, Swearingen C, Yazici Y (2008) Visual analog scales in formats other than a 10 centimeter horizontal line to assess pain and other clinical data. J Rheumatol 35(8):1550–1558

    PubMed  Google Scholar 

  35. Pokora I, Kempa K, Chrapusta SJ, Langfort J (2014) Effects of downhill and uphill exercises of equivalent submaximal intensities on selected blood cytokine levels and blood creatine kinase activity. Biol Sport 31(3):173–178. https://doi.org/10.5604/20831862.1111434

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Portalatin M, Winstead N (2012) Medical management of constipation. Clin Colon Rectal Surg 25(1):12–19. https://doi.org/10.1055/s-0032-1301754

    Article  PubMed  PubMed Central  Google Scholar 

  37. Quamme GA (2008) Recent developments in intestinal magnesium absorption. Curr Opin Gastroenterol 24(2):230–235. https://doi.org/10.1097/MOG.0b013e3282f37b59

    CAS  Article  PubMed  Google Scholar 

  38. Robson-Ansley P, Cockburn E, Walshe I, Stevenson E, Nimmo M (2010) The effect of exercise on plasma soluble IL-6 receptor concentration: a dichotomous response. Exerc Immunol Rev 16:56–76

    PubMed  Google Scholar 

  39. Robson-Ansley PJ, Blannin A, Gleeson M (2007) Elevated plasma interleukin-6 levels in trained male triathletes following an acute period of intense interval training. Eur J Appl Physiol 99(4):353–360. https://doi.org/10.1007/s00421-006-0354-y

    CAS  Article  PubMed  Google Scholar 

  40. Robson-Ansley PJ, de Milander L, Collins M, Noakes TD (2004) Acute interleukin-6 administration impairs athletic performance in healthy, trained male runners. Can J Appl Physiol Revue Canadienne de Physiologie Appliquee 29(4):411–418. https://doi.org/10.1139/h04-026

    CAS  Article  PubMed  Google Scholar 

  41. Romani AM, Matthews VD, Scarpa A (2000) Parallel stimulation of glucose and Mg(2+) accumulation by insulin in rat hearts and cardiac ventricular myocytes. Circ Res 86(3):326–333

    CAS  Article  Google Scholar 

  42. Schuchardt JP, Hahn A (2017) Intestinal absorption and factors influencing bioavailability of magnesium-an update. Curr Nutr Food Sci 13(4):260–278. https://doi.org/10.2174/1573401313666170427162740

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Setaro L, Santos-Silva PR, Nakano EY, Sales CH, Nunes N, Greve JM, Colli C (2014) Magnesium status and the physical performance of volleyball players: effects of magnesium supplementation. J Sports Sci 32(5):438–445. https://doi.org/10.1080/02640414.2013.828847

    Article  PubMed  Google Scholar 

  44. Shirreffs SM, Maughan RJ (1997) Whole body sweat collection in humans: an improved method with preliminary data on electrolyte content. J Appl Physiol 82(1):336–341. https://doi.org/10.1152/jappl.1997.82.1.336

    CAS  Article  PubMed  Google Scholar 

  45. Solaimani H, Soltani N, MaleKzadeh K, Sohrabipour S, Zhang N, Nasri S, Wang Q (2014) Modulation of GLUT4 expression by oral administration of Mg(2+) to control sugar levels in STZ-induced diabetic rats. Can J Physiol Pharmacol 92(6):438–444. https://doi.org/10.1139/cjpp-2013-0403

    CAS  Article  PubMed  Google Scholar 

  46. Stauber WT (2004) Factors involved in strain-induced injury in skeletal muscles and outcomes of prolonged exposures. J Electromyogr Kinesiol 14(1):61–70. https://doi.org/10.1016/j.jelekin.2003.09.010

    Article  PubMed  Google Scholar 

  47. Terblanche S, Noakes TD, Dennis SC, Marais D, Eckert M (1992) Failure of magnesium supplementation to influence marathon running performance or recovery in magnesium-replete subjects. Int J Sport Nutr 2(2):154–164

    CAS  Article  Google Scholar 

  48. Vargas NT, Marino F (2014) A neuroinflammatory model for acute fatigue during exercise. Sports Med 44(11):1479–1487. https://doi.org/10.1007/s40279-014-0232-4

    Article  PubMed  Google Scholar 

  49. Veronese N, Berton L, Carraro S, Bolzetta F, De Rui M, Perissinotto E et al (2014) Effect of oral magnesium supplementation on physical performance in healthy elderly women involved in a weekly exercise program: a randomized controlled trial. Am J Clin Nutr 100(3):974–981. https://doi.org/10.3945/ajcn.113.080168

    CAS  Article  PubMed  Google Scholar 

  50. Walshe I, Robson-Ansley P, St Clair Gibson A, Lawrence C, Thompson KG, Ansley L (2010) The reliability of the IL-6, sIL-6R and sgp130 response to a preloaded time trial. Eur J Appl Physiol 110(3):619–625. https://doi.org/10.1007/s00421-010-1548-x

    CAS  Article  PubMed  Google Scholar 

  51. Wedell-Neergaard A-S, Lang Lehrskov L, Christensen RH, Legaard GE, Dorph E, Larsen MK et al (2019) Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab 29(4):844–855. https://doi.org/10.1016/J.CMET.2018.12.007

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

CJS and TC designed the study. CJS, TC, MDC and GK conducted laboratory experiments. CJS, TC, ZY and YL analysed data. CJS and TC drafted the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Tom Cullen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Michael Lindinger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Steward, C.J., Zhou, Y., Keane, G. et al. One week of magnesium supplementation lowers IL-6, muscle soreness and increases post-exercise blood glucose in response to downhill running. Eur J Appl Physiol 119, 2617–2627 (2019). https://doi.org/10.1007/s00421-019-04238-y

Download citation

Keywords

  • Magnesium
  • Interleukin-6
  • Exercise
  • Recovery
  • Glucose
  • Muscle soreness