Skip to main content

Advertisement

Log in

What causes increased passive stiffness of plantarflexor muscle–tendon unit in children with spastic cerebral palsy?

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The term ‘stiffness’ is commonly used in the literature to refer to various components of ‘hyperresistance’ by which spastic muscles oppose to their passive lengthening, especially in children with cerebral palsy (CP). Originally, stiffness consists of mechanical resistance to passive movement in the absence of any muscle activation. Increased muscle stiffness in CP therefore refers to alterations to the mechanical properties of the tissue. It is closely linked to muscle shortening, yet the two phenomena are not equivalent. Both increased stiffness and shortening are present early in childhood in the plantarflexor muscles of children with spastic CP.

Methods

This narrative review provides a comprehensive overview of the literature on passive stiffness of the plantarflexor muscles measured at the joint, muscles, fascicles, and fiber level in children with CP. Articles were searched through the Pub’Med database using the keywords “cerebral palsy” AND “stiffness”.

Result

The ambiguous use of the term ‘stiffness’ has been supported by discrepancies in available results, influenced by heterogeneity in materials, methodologies and characteristics of the participants among studies. Increased stiffness at the joint and muscle belly level may be explained by altered structural properties at the microscopic level.

Conclusion

This thorough investigation of the literature suggests that the pathophysiology and the time course of the development of stiffness and contracture remain to be elucidated. A consideration of both morphological and mechanical measurements in children with CP is important when describing the alterations in their plantarflexors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AT :

Achilles tendon

CP :

Cerebral palsy

DF :

Dorsiflexion

ECM :

Extracellular matrix

GL :

Gastrocnemius lateralis

GM :

Gastrocnemius medialis

GMFCS :

Gross motor function classification system

PF :

Plantarflexors

SWE :

Shear wave elastography

TD :

Typically developing

References

  • Alexander C, Elliott C, Valentine J, Stannage K, Bear N, Donnelly CJ, Shipman P, Reid S (2018) Muscle volume alterations after first botulinum neurotoxin A treatment in children with cerebral palsy: a 6-month prospective cohort study. Dev Med Child Neurol 60:1165–1171

    Article  PubMed  Google Scholar 

  • Alhusaini AA, Crosbie J, Shepherd RB, Dean CM, Scheinberg A (2010) Mechanical properties of the plantarflexor musculotendinous unit during passive dorsiflexion in children with cerebral palsy compared with typically developing children: calf muscle stiffness in children with CP. Dev Med Child Neurol 52:e101–e106

    Article  PubMed  Google Scholar 

  • Alhusaini AAA, Crosbie J, Shepherd RB, Dean CM, Scheinberg A (2011) No change in calf muscle passive stiffness after botulinum toxin injection in children with cerebral palsy: calf muscle stiffness after BoNT-A injection. Dev Med Child Neurol 53:553–558

    Article  PubMed  Google Scholar 

  • Andrade RJ, Lacourpaille L, Freitas SR, McNair PJ, Nordez A (2016) Effects of hip and head position on ankle range of motion, ankle passive torque, and passive gastrocnemius tension: hip angle effects on ankle passive mechanical properties. Scand J Med Sci Sports 26:41–47

    Article  CAS  PubMed  Google Scholar 

  • Barber L, Barrett R, Lichtwark G (2011) Passive muscle mechanical properties of the medial gastrocnemius in young adults with spastic cerebral palsy. J Biomech 44:2496–2500

    Article  PubMed  Google Scholar 

  • Bar-On L, Aertbeliën E, Molenaers G, Dan B, Desloovere K (2014a) Manually controlled instrumented spasticity assessments: a systematic review of psychometric properties. Dev Med Child Neurol 56:932–950

    Article  PubMed  Google Scholar 

  • Bar-On L, Van Campenhout A, Desloovere K, Aertbeliën E, Huenaerts C, Vandendoorent B, Nieuwenhuys A, Molenaers G (2014b) Is an instrumented spasticity assessment an improvement over clinical spasticity scales in assessing and predicting the response to integrated botulinum toxin type A treatment in children with cerebral palsy? Arch Phys Med Rehabil 95:515–523

    Article  PubMed  Google Scholar 

  • Bar-On L, Molenaers G, Aertbeliën E, Van Campenhout A, Feys H, Nuttin B, Desloovere K (2015) Spasticity and its contribution to hypertonia in cerebral palsy. Biomed Res Int 2015:1–10

    Article  Google Scholar 

  • Barrett RS, Lichtwark GA (2010) Gross muscle morphology and structure in spastic cerebral palsy: a systematic review: gross muscle morphology and structure in CP. Dev Med Child Neurol 52:794–804

    Article  PubMed  Google Scholar 

  • Bax M, Goldstein M, Rosenbaum P, Leviton A, Paneth N, Dan B, Jacobsson B, Damiano D (2005) Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol 47:571–576

    Article  PubMed  Google Scholar 

  • Bénard MR, Jaspers RT, Huijing PA, Becher JG, Harlaar J (2010) Reproducibility of hand-held ankle dynamometry to measure altered ankle moment-angle characteristics in children with spastic cerebral palsy. Clin Biomech 25:802–808

    Article  Google Scholar 

  • Bénard MR, Harlaar J, Becher JG, Huijing PA, Jaspers RT (2011) Effects of growth on geometry of gastrocnemius muscle in children: a three-dimensional ultrasound analysis: Geometry of gastrocnemius medialis muscle in children. J Anat 219:388–402

    Article  PubMed  PubMed Central  Google Scholar 

  • Bilgici MC, Bekci T, Ulus Y, Ozyurek H, Aydin OF, Tomak L, Selcuk MB (2018) Quantitative assessment of muscular stiffness in children with cerebral palsy using acoustic radiation force impulse (ARFI) ultrasound elastography. J Med Ultrason 45:295–300

    Article  Google Scholar 

  • Booth CM, Cortina-Borja MJF, Theologis TN (2007) Collagen accumulation in muscles of children with cerebral palsy and correlation with severity of spasticity. Dev Med Child Neurol 43:314–320

    Article  Google Scholar 

  • Brandenburg JE, Eby SF, Song P, Kingsley-Berg S, Bamlet W, Sieck GC, An K-N (2016) Quantifying passive muscle stiffness in children with and without cerebral palsy using ultrasound shear wave elastography. Dev Med Child Neurol 58:1288–1294

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandenburg JE, Eby SF, Song P, Bamlet WR, Sieck GC, An K-N (2018) Quantifying effect of onabotulinum toxin A on passive muscle stiffness in children with cerebral palsy using ultrasound shear wave elastography. Am J Phys Med Rehabil 97:500–506

    Article  PubMed  PubMed Central  Google Scholar 

  • Cahill-Rowley K, Rose J (2014) Etiology of impaired selective motor control: emerging evidence and its implications for research and treatment in cerebral palsy. Dev Med Child Neurol 56:522–528

    Article  PubMed  Google Scholar 

  • Ceyhan Bilgici M, Bekci T, Ulus Y, Bilgici A, Tomak L, Selcuk MB (2018) Quantitative assessment of muscle stiffness with acoustic radiation force impulse elastography after botulinum toxin A injection in children with cerebral palsy. J Med Ultrason 45:137–141

    Article  Google Scholar 

  • Cobeljic G, Bumbasirevic M, Lesic A, Bajin Z (2009) The management of spastic equinus in cerebral palsy. Orthop Trauma 23:201–209

    Article  Google Scholar 

  • Creze M, Nordez A, Soubeyrand M, Rocher L, Maître X, Bellin M-F (2018) Shear wave sonoelastography of skeletal muscle: basic principles, biomechanical concepts, clinical applications, and future perspectives. Skelet Radiol 47:457–471

    Article  Google Scholar 

  • Cronin NJ, Lichtwark G (2013) The use of ultrasound to study muscle–tendon function in human posture and locomotion. Gait Posture 37:305–312

    Article  PubMed  Google Scholar 

  • Damiano DL, Prosser LA, Curatalo LA, Alter KE (2013) Muscle plasticity and ankle control after repetitive use of a functional electrical stimulation device for foot drop in cerebral palsy. Neurorehabilit Neural Repair 27:200–207

    Article  Google Scholar 

  • Dayanidhi S, Dykstra PB, Lyubasyuk V, McKay BR, Chambers HG, Lieber RL (2015) Reduced satellite cell number in situ in muscular contractures from children with cerebral palsy. J Orthop Res 33:1039–1045

    Article  PubMed  Google Scholar 

  • Desloovere K, Schörkhuber V, Fagard K, Van Campenhout A, De Cat J, Pauwels P, Ortibus E, De Cock P, Molenaers G (2012) Botulinum toxin type A treatment in children with cerebral palsy: evaluation of treatment success or failure by means of goal attainment scaling. Eur J Paediatr Neurol 16:229–236

    Article  PubMed  Google Scholar 

  • de Bruin M, Smeulders MJ, Kreulen M, Huijing PA, Jaspers RT (2014) Intramuscular connective tissue differences in spastic and control muscle: a mechanical and histological study. PLoS ONE 9:e101038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Gooijer-van de Groep KL, de Vlugt E, de Groot JH, van der Heijden-Maessen HC, Wielheesen DH, van Wijlen-Hempel RMS, Arendzen J, Meskers CG (2013) Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy. J NeuroEng Rehabil 10:81

    Article  PubMed  PubMed Central  Google Scholar 

  • DeWall RJ, Slane LC, Lee KS, Thelen DG (2014) Spatial variations in Achilles tendon shear wave speed. J Biomech 47:2685–2692

    Article  PubMed  PubMed Central  Google Scholar 

  • Domenighetti AA, Mathewson MA, Pichika R, Sibley LA, Zhao L, Chambers HG, Lieber RL (2018) Loss of myogenic potential and fusion capacity of muscle stem cells isolated from contractured muscle in children with cerebral palsy. Am J Physiol Cell Physiol 315:C247–C257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer SE, James M (2001) Contractures in orthopaedic and neurological conditions: a review of causes and treatment. Disabil Rehabil 23:549–558

    Article  CAS  PubMed  Google Scholar 

  • Gage J, Schwartz M, Koop S, Novacheck T (2009) The identification and treatment of gait problems in cerebral palsy. Mac Keith Press, London

    Google Scholar 

  • Gajdosik RL (2001) Passive extensibility of skeletal muscle: review of the literature with clinical implications. Clin Biomech 16:87–101

    Article  CAS  Google Scholar 

  • Gao F, Grant TH, Roth EJ, Zhang L-Q (2009) Changes in passive mechanical properties of the gastrocnemius muscle at the muscle fascicle and joint levels in stroke survivors. Arch Phys Med Rehabil 90:819–826

    Article  PubMed  Google Scholar 

  • Geertsen SS, Kirk H, Lorentzen J, Jorsal M, Johansson CB, Nielsen JB (2015) Impaired gait function in adults with cerebral palsy is associated with reduced rapid force generation and increased passive stiffness. Clin Neurophysiol 126:2320–2329

    Article  PubMed  Google Scholar 

  • Gillett JG, Boyd RN, Carty CP, Barber LA (2016) The impact of strength training on skeletal muscle morphology and architecture in children and adolescents with spastic cerebral palsy: a systematic review. Res Dev Disabil 56:183–196

    Article  PubMed  Google Scholar 

  • Goldstein M, Harper DC (2007) Management of cerebral palsy: equinus gait. Dev Med Child Neurol 43:563–569

    Article  Google Scholar 

  • Gough M, Shortland AP (2012) Could muscle deformity in children with spastic cerebral palsy be related to an impairment of muscle growth and altered adaptation?: Review. Dev Med Child Neurol 54:495–499

    Article  PubMed  Google Scholar 

  • Gracies J-M (2005) Pathophysiology of spastic paresis. II: emergence of muscle overactivity. Muscle Nerve 31:552–571

    Article  PubMed  Google Scholar 

  • Hägglund G, Wagner P (2011) Spasticity of the gastrosoleus muscle is related to the development of reduced passive dorsiflexion of the ankle in children with cerebral palsy: a registry analysis of 2,796 examinations in 355 children. Acta Orthop 82:744–748

    Article  PubMed  PubMed Central  Google Scholar 

  • Herbert R, Moseley A, Butler J, Gandevia S (2002) Change in length of relaxed muscle fascicles and tendons with knee and ankle movement in humans. J Physiol 539:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hug F, Tucker K, Gennisson J-L, Tanter M, Nordez A (2015) Elastography for muscle biomechanics: toward the estimation of individual muscle force. Exerc Sport Sci Rev 43:125–133

    Article  PubMed  Google Scholar 

  • Huijing PA (2007) Epimuscular myofascial force transmission between antagonistic and synergistic muscles can explain movement limitation in spastic paresis. J Electromyogr Kinesiol 17:708–724

    Article  PubMed  Google Scholar 

  • Kalkman BM, Bar-On L, Cenni F, Maganaris CN, Bass A, Holmes G, Desloovere K, Barton GJ, O’Brien TD (2018a) Muscle and tendon lengthening behaviour of the medial gastrocnemius during ankle joint rotation in children with cerebral palsy. Exp Physiol 103:1367–1376

    Article  PubMed  Google Scholar 

  • Kalkman BM, Bar-On L, Cenni F, Maganaris CN, Bass A, Holmes G, Desloovere K, Barton GJ, O’Brien TD (2018b) Medial gastrocnemius muscle stiffness cannot explain the increased ankle joint range of motion following passive stretching in children with cerebral palsy. Exp Physiol 103:350–357

    Article  PubMed  Google Scholar 

  • Konrad A, Tilp M (2014) Increased range of motion after static stretching is not due to changes in muscle and tendon structures. Clin Biomech 29:636–642

    Article  Google Scholar 

  • Kruse A, Schranz C, Svehlik M, Tilp M (2017) Mechanical muscle and tendon properties of the plantar flexors are altered even in highly functional children with spastic cerebral palsy. Clin Biomech 50:139–144

    Article  Google Scholar 

  • Kruse A, Schranz C, Tilp M, Svehlik M (2018) Muscle and tendon morphology alterations in children and adolescents with mild forms of spastic cerebral palsy. BMC Pediatr 18:156

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon DR, Park GY, Lee SU, Chung I (2012) Spastic cerebral palsy in children: dynamic sonoelastographic findings of medial gastrocnemius. Radiology 263:794–801

    Article  PubMed  Google Scholar 

  • Lacourpaille L, Hug F, Bouillard K, Hogrel J-Y, Nordez A (2012) Supersonic shear imaging provides a reliable measurement of resting muscle shear elastic modulus. Physiol Meas 33:N19–N28

    Article  PubMed  Google Scholar 

  • Le Sant G, Gross R, Hug F, Nordez A (2019a) Influence of low muscle activation levels on the ankle torque and muscle shear modulus during plantar flexor stretching. J Biomech

  • Le Sant G, Nordez A, Hug F, Andrade R, Lecharte T, McNair PJ, Gross R (2019b) Effects of stroke injury on the shear modulus of the lower leg muscle during passive dorsiflexion. J Appl Physiol 126:11–22

    Article  PubMed  Google Scholar 

  • Lee SSM, Gaebler-Spira D, Zhang L-Q, Rymer WZ, Steele KM (2016) Use of shear wave ultrasound elastography to quantify muscle properties in cerebral palsy. Clin Biomech 31:20–28

    Article  Google Scholar 

  • Lieber RL, Roberts TJ, Blemker SS, Lee SSM, Herzog W (2017) Skeletal muscle mechanics, energetics and plasticity. J NeuroEng Rehabil 14:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Maganaris CN (2003) Force-length characteristics of the in vivo human gastrocnemius muscle. Clin Anat 16:215–223

    Article  PubMed  Google Scholar 

  • Magnusson SP (1998) Passive properties of human skeletal muscle during stretch maneuvers. Scand J Med Sci Sports 8:65–77

    Article  CAS  PubMed  Google Scholar 

  • Maïsetti O, Hug F, Bouillard K, Nordez A (2012) Characterization of passive elastic properties of the human medial gastrocnemius muscle belly using supersonic shear imaging. J Biomech 45:978–984

    Article  PubMed  Google Scholar 

  • Malaiya R, McNee A, Fry NR, Eve L, Gough M, Shortland AP (2007) The morphology of the medial gastrocnemius in typically developing children and children with spastic hemiplegic cerebral palsy. J Electromyogr Kinesiol 17:656–663

    Article  Google Scholar 

  • Malhotra S, Pandyan A, Day C, Jones P, Hermens H (2009) Spasticity, an impairment that is poorly defined and poorly measured. Clin Rehabil 23:651–658

    Article  CAS  PubMed  Google Scholar 

  • Marsden J, Ramdharry G, Stevenson V, Thompson A (2012) Muscle paresis and passive stiffness: key determinants in limiting function in hereditary and sporadic spastic paraparesis. Gait Posture 35:266–271

    Article  PubMed  PubMed Central  Google Scholar 

  • Martín Lorenzo T, Rocon E, Martínez Caballero I, Ramírez Barragán A, Lerma Lara S (2017) Prolonged stretching of the ankle plantarflexors elicits muscle-tendon adaptations relevant to ankle gait kinetics in children with spastic cerebral palsy. Med Hypotheses 109:65–69

    Article  PubMed  Google Scholar 

  • Mathewson MA, Chambers HG, Girard PJ, Tenenhaus M, Schwartz AK, Lieber RL (2014) Stiff muscle fibers in calf muscles of patients with cerebral palsy lead to high passive muscle stiffness. J Orthop Res 32:1667–1674

    Article  PubMed  Google Scholar 

  • Matthiasdottir S, Hahn M, Yaraskavitch M, Herzog W (2014) Muscle and fascicle excursion in children with cerebral palsy. Clin Biomech 29:458–462

    Article  Google Scholar 

  • McNair P, Hewson D, Dombroski E, Stanley S (2002) Stiffness and passive peak force changes at the ankle joint: the effect of different joint angular velocities. Clin Biomech 17:536–540

    Article  Google Scholar 

  • McNair PJ, Dombroski EW, Hewson DJ, Stanley S (2001) Stretching at the ankle joint: viscoelastic responses to holds and continuous passive motion. Med Sci Sports Exerc 33:354–358

    Article  CAS  PubMed  Google Scholar 

  • Mohagheghi AA, Khan T, Meadows TH, Giannikas K, Baltzopoulos V, Maganaris CN (2007) Differences in gastrocnemius muscle architecture between the paretic and non-paretic legs in children with hemiplegic cerebral palsy. Clin Biomech 22:718–724

    Article  Google Scholar 

  • Moseley AM, Crosbie J, Adams R (2001) Normative data for passive ankle plantarflexion–dorsiflexion flexibility. Clin Biomech (Bristol, Avon) 16:514–521

    Article  CAS  Google Scholar 

  • Nakamura M, Ikezoe T, Umegaki H, Kobayashi T, Nishisita S, Ichihashi N (2016) Shear elastic modulus is a reproducible index reflecting the passive mechanical properties of medial gastrocnemius muscle belly. Acta Radiol Open 5:2058460115604009

    PubMed  PubMed Central  Google Scholar 

  • Nordez A, Gross R, Andrade R, Le Sant G, Freitas S, Ellis R, McNair PJ, Hug F (2017) Non-muscular structures can limit the maximal joint range of motion during stretching. Sports Med 47:1925–1929

    Article  PubMed  Google Scholar 

  • Park G-Y, Kwon DR (2012) Sonoelastographic evaluation of medial gastrocnemius muscles intrinsic stiffness after rehabilitation therapy with botulinum toxin A injection in spastic cerebral palsy. Arch Phys Med Rehabil 93:2085–2089

    Article  PubMed  Google Scholar 

  • Peeters N, Hanssen B, Cenni F, Schless SH, De Beukelaer N, Degelaen M, den Broeck CV, Van Campenhout A, Desloovere K, Bar-On L (2018) O 019—do botulinum toxin-A and lower leg casting alter calf muscle and tendon lengths in children with spastic cerebral palsy? Gait Posture 65:36–38

    Article  Google Scholar 

  • Perry J (1992) Gait analysis: normal and pathological function. Slack Incorporated, Thorofare

    Google Scholar 

  • Pingel J, Suhr F (2017) Are mechanically sensitive regulators involved in the function and (patho)physiology of cerebral palsy-related contractures? J Muscle Res Cell Motil 38:317–330

    Article  CAS  PubMed  Google Scholar 

  • Pingel J, Bartels EM, Nielsen JB (2017) New perspectives on the development of muscle contractures following central motor lesions: muscle contractures following central motor lesions. J Physiol 595:1027–1038

    Article  CAS  PubMed  Google Scholar 

  • Pool D, Elliott C, Bear N, Donnelly CJ, Davis C, Stannage K, Valentine J (2016) Neuromuscular electrical stimulation-assisted gait increases muscle strength and volume in children with unilateral spastic cerebral palsy. Dev Med Child Neurol 58:492–501

    Article  PubMed  Google Scholar 

  • Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, Dan B, Jacobsson B (2007) A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl 109:8–14

    PubMed  Google Scholar 

  • Ross SA, Foreman M, Engsberg JR (2011) Comparison of 3 different methods to analyze ankle plantarflexor stiffness in children with spastic diplegia cerebral palsy. Arch Phys Med Rehabil 92:2034–2040

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan ED, Herda TJ, Costa PB, Defreitas JM, Beck TW, Stout JR, Cramer JT (2009) Passive properties of the muscle-tendon unit: the influence of muscle cross-sectional area. Muscle Nerve 39:227–229

    Article  PubMed  Google Scholar 

  • Scholtes VA, Becher JG, Beelen A, Lankhorst GJ (2005) Clinical assessment of spasticity in children with cerebral palsy: a critical review of available instruments. Dev Med Child Neurol 48:64

    Article  Google Scholar 

  • Sellier E, Platt MJ, Andersen GL, Krägeloh-Mann I, De La Cruz J, Cans C, Surveillance of Cerebral Palsy Network (2016) Decreasing prevalence in cerebral palsy: a multi-site European population-based study, 1980 to 2003. Dev Med Child Neurol 58:85–92

    Article  PubMed  Google Scholar 

  • Shortland AP, Harris CA, Gough M, Robinson RO (2007) Architecture of the medial gastrocnemius in children with spastic diplegia. Dev Med Child Neurol 44:158–163

    Article  Google Scholar 

  • Sinkjær T, Magnussen I (1994) Passive, intrinsic and reflex-mediated stiffness in the ankle extensors of hemiparetic patients. Brain 117:355–363

    Article  PubMed  Google Scholar 

  • Sinkjér T, Toft E, Larsen K, Andreassen S, Hansen HJ (1993) Non-reflex and reflex mediated ankle joint stiffness in multiple sclerosis patients with spasticity: reflex stiffness in spastic muscles. Muscle Nerve 16:69–76

    Article  Google Scholar 

  • Smeulders MJC, Kreulen M (2006) Adaptation of the properties of spastic muscle with wrist extension deformity. Muscle Nerve 34:365–368

    Article  PubMed  Google Scholar 

  • Smeulders MJC, Kreulen M, Hage JJ, Huijing PA, van der Horst CMAM (2004) Overstretching of sarcomeres may not cause cerebral palsy muscle contracture. J Orthop Res 22:1331–1335

    Article  PubMed  Google Scholar 

  • Smith LR, Lee KS, Ward SR, Chambers HG, Lieber RL (2011) Hamstring contractures in children with spastic cerebral palsy result from a stiffer extracellular matrix and increased in vivo sarcomere length: passive mechanical properties of muscle contracture. J Physiol 589:2625–2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith LR, Chambers HG, Lieber RL (2013) Reduced satellite cell population may lead to contractures in children with cerebral palsy: reduced satellite cells in muscle contractures. Dev Med Child Neurol 55:264–270

    Article  PubMed  Google Scholar 

  • Suydam SM, Soulas EM, Elliott DM, Gravare Silbernagel K, Buchanan TS, Cortes DH (2015) Viscoelastic properties of healthy achilles tendon are independent of isometric plantar flexion strength and cross-sectional area: viscoelastic properties of achilles tendon. J Orthop Res 33:926–931

    Article  PubMed  PubMed Central  Google Scholar 

  • Švehlík M, Leistritz L, Kraus T, Zwick EB, Steinwender G, Linhart WE (2013) The growth and the development of gastro-soleus contracture in cerebral palsy. Gait Posture 38:S12

    Article  Google Scholar 

  • Tardieu C, Huet de la Tour E, Bret MD, Tardieu G (1982) Muscle hypoextensibility in children with cerebral palsy: I. Clinical and experimental observations. Arch Phys Med Rehabil 63:97–102

    CAS  PubMed  Google Scholar 

  • Theis N, Korff T, Kairon H, Mohagheghi AA (2013) Does acute passive stretching increase muscle length in children with cerebral palsy? Clin Biomech 28:1061–1067

    Article  Google Scholar 

  • Theis N, Korff T, Mohagheghi AA (2015) Does long-term passive stretching alter muscle–tendon unit mechanics in children with spastic cerebral palsy? Clin Biomech 30:1071–1076

    Article  Google Scholar 

  • Theis N, Mohagheghi AA, Korff T (2016) Mechanical and material properties of the plantarflexor muscles and Achilles tendon in children with spastic cerebral palsy and typically developing children. J Biomech 49:3004–3008

    Article  PubMed  Google Scholar 

  • van den Noort JC, Bar-On L, Aertbeliën E, Bonikowski M, Braendvik SM, Broström EW, Buizer AI, Burridge JH, van Campenhout A, Dan B et al (2017) European consensus on the concepts and measurement of the pathophysiological neuromuscular responses to passive muscle stretch. Eur J Neurol 24:981–e38

    Article  PubMed  Google Scholar 

  • Vola EA, Albano M, Di Luise C, Servodidio V, Sansone M, Russo S, Corrado B, Servodio Iammarrone C, Caprio MG, Vallone G (2018) Use of ultrasound shear wave to measure muscle stiffness in children with cerebral palsy. J Ultrasound 21:241–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weide G, Huijing PA, Maas JC, Becher JG, Harlaar J, Jaspers RT (2015) Medial gastrocnemius muscle growth during adolescence is mediated by increased fascicle diameter rather than by longitudinal fascicle growth. J Anat 226:530–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Willerslev-Olsen M, Lorentzen J, Sinkjaer T, Nielsen JB (2013) Passive muscle properties are altered in children with cerebral palsy before the age of 3 years and are difficult to distinguish clinically from spasticity. Dev Med Child Neurol 55:617–623

    Article  PubMed  Google Scholar 

  • Willerslev-Olsen M, Lorentzen J, Nielsen JB (2014) Gait training reduces ankle joint stiffness and facilitates heel strike in children with cerebral palsy. NeuroRehabilitation 35:643–655

    PubMed  Google Scholar 

  • Willerslev-Olsen M, Choe Lund M, Lorentzen J, Barber L, Kofoed Hansen M, Nielsen JB (2018) Impaired muscle growth precedes development of increased stiffness of the triceps surae musculotendinous unit in children with cerebral palsy. Dev Med Child Neurol 60(7):672–679

    Article  PubMed  Google Scholar 

  • Yucesoy CA, Huijing PA (2007) Substantial effects of epimuscular myofascial force transmission on muscular mechanics have major implications on spastic muscle and remedial surgery. J Electromyogr Kinesiol 17:664–679

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by grants from ALLP (Association Lyonnaise de Logistique Posthospitalière), SFERHE (Société Francophone d’Etude et de Recherche sur les Handicaps de l’Enfant) and R4P (Réseau Régional de Rééducation et de Réadaptation Pédiatrique en Rhône Alpes), which are French scientific societies supporting research on childhood disabilities. These foundations have no financial interest in the publication of the paper. The authors thank Callum Brownstein for English revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Boulard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Michael Lindinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulard, C., Gross, R., Gautheron, V. et al. What causes increased passive stiffness of plantarflexor muscle–tendon unit in children with spastic cerebral palsy?. Eur J Appl Physiol 119, 2151–2165 (2019). https://doi.org/10.1007/s00421-019-04208-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-019-04208-4

Keywords

Navigation