Skip to main content

Decreased supraspinal control and neuromuscular function controlling the ankle joint in athletes with chronic ankle instability

Abstract

Purpose

Chronic ankle instability (CAI) alters lower extremity neuromuscular function, associated with a change in corticomotor excitability. The aim of this study was to compare corticomotor excitability and neuromuscular function of the muscles around the ankle between athletes with CAI and without CAI (non-CAI).

Methods

Nineteen CAI athletes (15 men and 4 women) and 19 non-CAI athletes (15 men and 4 women) participated (age- and sex-matched). Corticomotor excitability was measured by transcranial magnetic stimulation for the following muscles: the tibialis anterior (TA), peroneus longus (PL) and gastrocnemius medialis (GM). The resting motor threshold (rMT), motor evoked potential (MEP), and latency (Lat) were subsequently measured. Neuromuscular function was assessed with a jump test, using the EMG activity before foot contact, peak torque, and joint position sense.

Results

The corticomotor excitability in CAI showed a lower normalized MEP in the TA (p = 0.026) and PL (p = 0.003), and longer latency in the TA (p = 0.049) and GM (p = 0.027) compared with non-CAI. The neuromuscular assessment showed CAI had less EMG activity of the PL (p < 0.001), less peak torque of the dorsiflexor (p = 0.019) muscle compared with non-CAI.

Conclusion

Athletes with CAI had lower corticomotor excitability in the TA and PL and a longer latency in the TA and GM muscles. Additionally, CAI demonstrated functional neuromuscular deficits by decreasing EMG activity of the PL muscle and strength of the dorsiflexor muscle. Our findings indicated maladaptation at both cortical and peripheral levels among athletes with CAI.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

CAI:

Chronic ankle instability

Non-CAI:

Non-chronic ankle instability

TA:

Tibialis anterior

PL:

Peroneus longus

GM:

Gastrocnemius medialis

EMG:

Electromyography

CAIT:

Cumberland ankle instability tool

MVC:

Maximum voluntary contraction

TMS:

Transcranial magnetic stimulation

rMT:

Resting motor threshold

MEP:

Motor evoked potential

Lat:

Latency

CNS:

Central nervous system

ACL:

Anterior cruciate ligament

SPM:

Statistical parametric mapping

SENIAM:

Surface electromyography for the non-invasive assessment of muscles

References

  1. Ambegaonkar JP, Shultz SJ (2010) Changing filtering parameters affects lower extremity pre-landing muscle activation onset times. Sokinetics Exercise Sci 8(18):125. https://doi.org/10.3233/IES-2010-0370

    Article  Google Scholar 

  2. Allet L, Zumstein F, Eichelberger P, Armand S, Punt IM (2017) Neuromuscular control mechanisms during single-leg jump landing in subacute ankle sprain patients: a case control study. PM & R 9(3):241–250. https://doi.org/10.1016/j.pmrj.2016.07.006

    Article  Google Scholar 

  3. Boudreau SA, Farina D, Falla D (2010) The role of motor learning and neuroplasticity in designing rehabilitation approaches for musculoskeletal pain disorders. Man Therapy 15(5):410–414. https://doi.org/10.1016/j.math.2010.05.008

    Article  Google Scholar 

  4. Bravo-Esteban E, Taylor J, Aleixandre M, Simon-Martinez C, Torricelli D, Pons JL, Avila-Martin G, Galan-Arriero I, Gomez-Soriano J (2017) Longitudinal estimation of intramuscular tibialis anterior coherence during subacute spinal cord injury: relationship with neurophysiological, functional and clinical outcome measures. J Neuroeng Rehabil 14(1):58. https://doi.org/10.1186/s12984-017-0271-9

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brown C, Bowser B, Simpson KJ (2012) Movement variability during single leg jump landings in individuals with and without chronic ankle instability. Clin Biomech 27(1):52–63. https://doi.org/10.1016/j.clinbiomech.2011.07.012

    Article  Google Scholar 

  6. Chan KW, Ding BC, Mroczek KJ (2011) Acute and chronic lateral ankle instability in the athlete. Bull NYU Hosp Jt Dis 69(1):17–26

    PubMed  Google Scholar 

  7. Delahunt E, Monaghan K, Caulfield B (2006) Changes in lower limb kinematics, kinetics, and muscle activity in subjects with functional instability of the ankle joint during a single leg drop jump. J Orthop Res 24(10):1991–2000. https://doi.org/10.1002/jor.20235

    Article  PubMed  Google Scholar 

  8. Doherty C, Bleakley C, Hertel J, Caulfield B, Ryan J, Delahunt E (2016) Single-leg drop landing movement strategies in participants with chronic ankle instability compared with lateral ankle sprain 'copers'. Knee Surg Sports Traumatol, Arthrosc 24(4):1049–1059. https://doi.org/10.1007/s00167-015-3852-9

    Article  Google Scholar 

  9. Donnelly L, Donovan L, Hart JM, Hertel J (2017) Eversion strength and surface electromyography measures with and without chronic ankle instability measured in 2 positions. Foot Ankle Int 38(7):769–778. https://doi.org/10.1177/1071100717701231

    Article  PubMed  Google Scholar 

  10. Fisher BE, Piraino A, Lee YY, Smith JA, Johnson S, Davenport TE, Kulig K (2016) The effect of velocity of joint mobilization on corticospinal excitability in individuals with a history of ankle sprain. J Orthop Sports Phys Ther 46(7):562–570. https://doi.org/10.2519/jospt.2016.6602

    Article  PubMed  Google Scholar 

  11. Fox J, Docherty CL, Schrader J, Applegate T (2008) Eccentric plantar-flexor torque deficits in participants with functional ankle instability. J Athl Train 43(1):51–54. https://doi.org/10.4085/1062-6050-43.1.51

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gallasch E, Christova M, Krenn M, Kossev A, Rafolt D (2009) Changes in motor cortex excitability following training of a novel goal-directed motor task. Eur J Appl Physiol 105(1):47–54. https://doi.org/10.1007/s00421-008-0871-y

    Article  PubMed  Google Scholar 

  13. Galvan A (2010) Neural plasticity of development and learning. Hum Brain Mapp 31(6):879–890. https://doi.org/10.1002/hbm.21029

    Article  PubMed  Google Scholar 

  14. Goodall S, Howatson G, Romer L, Ross E (2014) Transcranial magnetic stimulation in sport science: a commentary. Eur J Sport Sci 14(Suppl 1):S332–340. https://doi.org/10.1080/17461391.2012.704079

    Article  PubMed  Google Scholar 

  15. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10(5):361–374

    Article  CAS  PubMed  Google Scholar 

  16. Hertel J (2000) Functional instability following lateral ankle sprain. Sports Med 29(5):361–371

    Article  CAS  PubMed  Google Scholar 

  17. Hiller CE, Refshauge KM, Bundy AC, Herbert RD, Kilbreath SL (2006) The Cumberland ankle instability tool: a report of validity and reliability testing. Arch Phys Med Rehabil 87(9):1235–1241. https://doi.org/10.1016/j.apmr.2006.05.022

    Article  PubMed  Google Scholar 

  18. Hiller CE, Nightingale EJ, Lin CW, Coughlan GF, Caulfield B, Delahunt E (2011) Characteristics of people with recurrent ankle sprains: a systematic review with meta-analysis. Br J Sports Med 45(8):660–672. https://doi.org/10.1136/bjsm.2010.077404

    Article  PubMed  Google Scholar 

  19. Kaminski TW, Perrin DH, Gansneder BM (1999) Eversion strength analysis of uninjured and functionally unstable ankles. J Athl Train 34(3):239–245

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kandel R, Eric SHJ, Thomas JJ (2000) Principles of neural science. The motor unit and muscle action, McGraw-Hill Companies, New York

    Google Scholar 

  21. Kapreli E, Athanasopoulos S (2006) The anterior cruciate ligament deficiency as a model of brain plasticity. Med Hypotheses 67(3):645–650. https://doi.org/10.1016/j.mehy.2006.01.063

    Article  PubMed  Google Scholar 

  22. Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. The Lancet Neurology 2(3):145–156

    Article  PubMed  Google Scholar 

  23. Kosik KB, Terada M, Drinkard CP, McCann RS, Gribble PA (2017) Potential corticomotor plasticity in those with and without chronic ankle instability. Med Sci Sports Exerc 49(1):141–149. https://doi.org/10.1249/MSS.0000000000001066

    Article  PubMed  Google Scholar 

  24. Lepley AS, Ericksen HM, Sohn DH, Pietrosimone BG (2014) Contributions of neural excitability and voluntary activation to quadriceps muscle strength following anterior cruciate ligament reconstruction. Knee 21(3):736–742. https://doi.org/10.1016/j.knee.2014.02.008

    Article  PubMed  Google Scholar 

  25. Li Y, Ko J, Walker MA, Brown CN, Schmidt JD, Kim SH, Simpson KJ (2018) Does chronic ankle instability influence lower extremity muscle activation of females during landing? J Electromyogr Kinesiol 38:81–87. https://doi.org/10.1016/j.jelekin.2017.11.009

    Article  PubMed  Google Scholar 

  26. Maeda F, Pascual-Leone A (2003) Transcranial magnetic stimulation: studying motor neurophysiology of psychiatric disorders. Psychopharmacology 168(4):359–376. https://doi.org/10.1007/s00213-002-1216-x

    Article  CAS  PubMed  Google Scholar 

  27. Masse-Alarie H, Beaulieu LD, Preuss R, Schneider C (2016) Corticomotor control of lumbar multifidus muscles is impaired in chronic low back pain: concurrent evidence from ultrasound imaging and double-pulse transcranial magnetic stimulation. Exp Brain Res 234(4):1033–1045. https://doi.org/10.1007/s00221-015-4528-x

    Article  PubMed  Google Scholar 

  28. Matsunaga K, Uozumi T, Tsuji S, Murai Y (1998) Age-dependent changes in physiological threshold asymmetries for the motor evoked potential and silent period following transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 109(6):502–507

    Article  CAS  PubMed  Google Scholar 

  29. McLeod MM, Gribble PA, Pietrosimone BG (2015) Chronic ankle instability and neural excitability of the lower extremity. Journal Athl Train 50(8):847–853. https://doi.org/10.4085/1062-6050-50.4.06

    Article  Google Scholar 

  30. Mezzarane RA, Elias LA, Magalhães FH, Chaud VM, Kohn AF (2013) Experimental and simulated EMG responses in the study of the human spinal cord. In: Turker H (ed) Electrodiagnosis in new frontiers of clinical research. Intech, Rijeka, pp 57–87

    Google Scholar 

  31. Mileva KN, Bowtell JL, Kossev AR (2009) Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men. Exp Physiol 94(1):103–116. https://doi.org/10.1113/expphysiol.2008.042689

    Article  PubMed  Google Scholar 

  32. Mills KR, Nithi KA (1997) Corticomotor threshold to magnetic stimulation: normal values and repeatability. Muscle Nerve 20(5):570–576

    Article  CAS  PubMed  Google Scholar 

  33. Monaghan K, Delahunt E, Caulfield B (2006) Ankle function during gait in patients with chronic ankle instability compared to controls. Clin Biomech 21(2):168–174. https://doi.org/10.1016/j.clinbiomech.2005.09.004

    Article  Google Scholar 

  34. Mrdakovic V, Ilic DB, Jankovic N, Rajkovic Z, Stefanovic D (2008) Pre-activity modulation of lower extremity muscles within different types and heights of deep jump. J Sports Sci Med 7:10

    Google Scholar 

  35. Munn J, Beard DJ, Refshauge KM, Lee RY (2003) Eccentric muscle strength in functional ankle instability. Med Sci Sports Exerc 35(2):245–250. https://doi.org/10.1249/01.MSS.0000048724.74659.9F

    Article  PubMed  Google Scholar 

  36. Needle AR, Palmer JA, Kesar TM, Binder-Macleod SA, Swanik CB (2013) Brain regulation of muscle tone in healthy and functionally unstable ankles. J Sport Rehabil 22(3):202–211

    Article  PubMed  Google Scholar 

  37. Needle AR, Baumeister J, Kaminski TW, Higginson JS, Farquhar WB, Swanik CB (2014a) Neuromechanical coupling in the regulation of muscle tone and joint stiffness. Scand J Med Sci Sports 24(5):737–748

    Article  CAS  PubMed  Google Scholar 

  38. Needle AR, Swanik CB, Schubert M, Reinecke K, Farquhar WB, Higginson JS, Kaminski TW, Baumeister J (2014b) Decoupling of laxity and cortical activation in functionally unstable ankles during joint loading. Eur J Appl Physiol 114(10):2129–2138. https://doi.org/10.1007/s00421-014-2929-3

    Article  PubMed  Google Scholar 

  39. Negahban H, Moradi-Bousari A, Naghibi S, Sarrafzadeh J, Shaterzadeh-Yazdi MJ, Goharpey S, Etemadi M, Mazaheri M, Feizi A (2013) The eccentric torque production capacity of the ankle, knee, and hip muscle groups in patients with unilateral chronic ankle instability. Asian J Sports Med 4(2):144–152

    Article  PubMed  PubMed Central  Google Scholar 

  40. Neptune RR, Wright IC, van den Bogert AJ (1999) Muscle coordination and function during cutting movements. Med Sci Sports Exerc 31(2):294–302

    Article  CAS  PubMed  Google Scholar 

  41. Pietrosimone BG, Gribble PA (2012) Chronic ankle instability and corticomotor excitability of the fibularis longus muscle. J Athl Train 47(6):621–626. https://doi.org/10.4085/1062-6050-47.6.11

    Article  PubMed  PubMed Central  Google Scholar 

  42. Robinson MA, Vanrenterghem J, Pataky TC (2015) Statistical parametric mapping (SPM) for alpha-based statistical analyses of multi-muscle EMG time-series. J Electromyogr Kinesiol 25(1):14–19. https://doi.org/10.1016/j.jelekin.2014.10.018

    Article  PubMed  Google Scholar 

  43. Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMSCG (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120(12):2008–2039. https://doi.org/10.1016/j.clinph.2009.08.016

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rossini PM, Rossi S (2007) Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology 68(7):484–488. https://doi.org/10.1212/01.wnl.0000250268.13789.b2

    Article  PubMed  Google Scholar 

  45. Santello M (2005) Review of motor control mechanisms underlying impact absorption from falls. Gait Posture 21(1):85–94. https://doi.org/10.1016/j.gaitpost.2004.01.005

    Article  PubMed  Google Scholar 

  46. Santello M, McDonagh MJ (1998) The control of timing and amplitude of EMG activity in landing movements in humans. Exp Physiol 83(6):857–874

    Article  CAS  PubMed  Google Scholar 

  47. Santos MJ, Liu W (2008) Possible factors related to functional ankle instability. J Orthop Sports Phys Ther 38(3):150–157. https://doi.org/10.2519/jospt.2008.2524

    Article  PubMed  Google Scholar 

  48. Sefton JM, Hicks-Little CA, Hubbard TJ, Clemens MG, Yengo CM, Koceja DM, Cordova ML (2008) Segmental spinal reflex adaptations associated with chronic ankle instability. Arch Phys Med Rehabil 89(10):1991–1995. https://doi.org/10.1016/j.apmr.2008.03.014

    Article  PubMed  Google Scholar 

  49. Sekir U, Yildiz Y, Hazneci B, Ors F, Aydin T (2007) Effect of isokinetic training on strength, functionality and proprioception in athletes with functional ankle instability. Knee Surg Sports Traumatol Arthrosc 15(5):654–664. https://doi.org/10.1007/s00167-006-0108-8

    Article  PubMed  Google Scholar 

  50. Son SJ, Kim H, Seeley MK, Hopkins JT (2017) Movement strategies among groups of chronic ankle instability, coper, and control. Med Sci Sports Exerc 49(8):1649–1661. https://doi.org/10.1249/MSS.0000000000001255

    Article  PubMed  Google Scholar 

  51. Suda EY, Amorim CF, Sacco Ide C (2009) Influence of ankle functional instability on the ankle electromyography during landing after volleyball blocking. J Electromyogr Kinesiol 19(2):e84–93. https://doi.org/10.1016/j.jelekin.2007.10.007

    Article  PubMed  Google Scholar 

  52. van der Kamp W, Zwinderman AH, Ferrari MD, van Dijk JG (1996) Cortical excitability and response variability of transcranial magnetic stimulation. J Clin Neurophysiol 13(2):164–171

    Article  PubMed  Google Scholar 

  53. Ward S, Pearce AJ, Pietrosimone B, Bennell K, Clark R, Bryant AL (2015) Neuromuscular deficits after peripheral joint injury: a neurophysiological hypothesis. Muscle Nerve 51(3):327–332. https://doi.org/10.1002/mus.24463

    Article  PubMed  Google Scholar 

  54. Wassermann EM (2002) Variation in the response to transcranial magnetic brain stimulation in the general population. Clin Neurophysiol 113(7):1165–1171

    Article  PubMed  Google Scholar 

  55. Webster KA, Pietrosimone BG, Gribble PA (2016) Muscle Activation During Landing Before and After Fatigue in Individuals With or Without Chronic Ankle Instability. J Athl Train 51(8):629–636. https://doi.org/10.4085/1062-6050-51.10.01

    Article  PubMed  PubMed Central  Google Scholar 

  56. Willems T, Witvrouw E, Verstuyft J, Vaes P, De Clercq D (2002) Proprioception and Muscle Strength in Subjects With a History of Ankle Sprains and Chronic Instability. J Athl Train 37(4):487–493

    PubMed  PubMed Central  Google Scholar 

  57. Yeung MS, Chan KM, So CH, Yuan WY (1994) An epidemiological survey on ankle sprain. Br J Sports Med 28(2):112–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Faculty of Physical Therapy and Graduated School, Mahidol University supported this study. We thank Assoc.Prof. James J. Laskin, PhD, PT, for providing helpful comments on this manuscript.

Author information

Affiliations

Authors

Contributions

Ampika Nanbancha and Jarugool Tretriluxana formulate research questions, designed experiment interpreted the findings and prepared the manuscript. Ampika Nanbancha performed data collection Komsak Sinsurin, and Weerawat Limroongreungrat were involved in research design supervised and providing guidance. All authors provided critical feedback and helped shape the research, analysis, and approved the manuscript.

Corresponding author

Correspondence to Jarugool Tretriluxana.

Ethics declarations

Conflict of interest

The authors report they have no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Lori Ann Vallis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nanbancha, A., Tretriluxana, J., Limroongreungrat, W. et al. Decreased supraspinal control and neuromuscular function controlling the ankle joint in athletes with chronic ankle instability. Eur J Appl Physiol 119, 2041–2052 (2019). https://doi.org/10.1007/s00421-019-04191-w

Download citation

Keywords

  • Ankle sprains
  • Chronic ankle instability
  • Cortical plasticity
  • Corticomotor excitability
  • Neuromuscular function
  • Supraspinal control