Abstract
Purpose
Training intensity and health effects of football were investigated gender specifically in individuals with prediabetes.
Methods
Participants with prediabetes (age 60 ± 6 years) were randomised into a football and dietary advice group (FD-men n = 13 and FD-women n = 14) or a dietary advice only group (D-men n = 12 and D-women n = 11). FD performed football training (twice/week for 16 weeks), while both groups received dietary advice. Body composition, bone variables, blood pressure, blood lipid profile and peak oxygen uptake (VO2peak) were determined pre- and post-intervention.
Results
Mean heart rate during football training was 79 ± 2 and 80 ± 3% HRmax for FD-men and FD-women, respectively, with peak heart rate values of 96 ± 1 and 97 ± 2% HRmax, with no gender differences. VO2peak increased more (P < 0.05) in FD-men and FD-women than in D-men and D-women. However, relative delta change in VO2peak was 21 ± 14% in FD-women, which was greater (P < 0.05) than in FD-men (11 ± 12%). Reduction in SBP and DBP, respectively, was similar in FD-men (− 10.8 ± 13.0 and − 7.3 ± 11.8 mmHg) and FD-women (− 11.3 ± 11.0 and − 7.1 ± 6.2 mmHg), with within-gender differences for men. Total plasma cholesterol and LDL cholesterol decreased (P < 0.05) by − 0.7 ± 1.1 and − 0.5 ± 0.9 mmol L−1, respectively, in FD-women and − 0.2 ± 0.4 and − 0.2 ± 0.3 mmol L−1 in FD-men, with no significant gender differences (P = 0.08). Body fat content was lowered (P < 0.05) by 3 and 4%-points in FD-men and FD-women, respectively.
Conclusion
Gender-mixed football training combined with dietary advice causes broad-spectrum health effects for men and women with prediabetes, with minor gender-specific differences. Thus, the intensity and training-induced effects of football training are also high for elderly women with prediabetes.
This is a preview of subscription content, access via your institution.





Abbreviations
- ANOVA:
-
Analysis of variance
- BTM:
-
Bone turnover markers
- BMC:
-
Bone mineral content
- BP:
-
Blood pressure
- CI:
-
Confidence interval
- CRP:
-
C-reactive protein
- CTX:
-
C-terminal telopeptide
- BMD:
-
Bone mineral density
- DBP:
-
Diastolic blood pressure
- Diet-men:
-
Diet men
- Diet-women:
-
Diet women
- DXA:
-
Dual-energy X-ray absorptiometry
- ES:
-
Effect size
- FD-men:
-
Football and diet men
- FD-women:
-
Football and diet women
- HR:
-
Heart rate
- HDL:
-
High-density lipoprotein
- IFG:
-
Impaired fasting glycaemia
- IGT:
-
Impaired glucose tolerance
- LBM:
-
Lean body mass
- LDL:
-
Low-density lipoprotein
- L2, L3 and L4:
-
Lumbar vertebrae
- MAP:
-
Mean arterial pressure
- OGTT:
-
Oral Glucose Tolerance Test
- VO2peak :
-
Peak oxygen uptake
- P1NP:
-
Procollagen type I N propeptide
- RCT:
-
Randomized Controlled Trial
- RHR:
-
Resting heart rate
- SD:
-
Standard deviation
- SBP:
-
Systolic blood pressure
- TC:
-
Total cholesterol
- TG:
-
Triglycerides
- T2DM:
-
Type II diabetes mellitus
- VO2max :
-
Maximal oxygen uptake
- W:
-
Watt
References
American Diabetes Association (2017) Lifestyle management Sec. 4. In standards of medical care in diabetesd 2017. Diabetes Care 40(Suppl 1):S33–S43
Andersen TR, Schmidt JF, Thomassen M, Hornstrup T, Frandsen U, Randers MB, Hansen PR, Krustrup P, Bangsbo J (2014) A preliminary study: effects of football training on glucose control, body composition, and performance in men with type 2 diabetes. Scand J Med Sci Sports 24(S1):43–56
Bangsbo J, Nielsen JJ, Mohr M, Randers MB, Krustrup BR, Brito J, Nybo L, Krustrup P (2010) Performance enhancements and muscular adaptations of a 16-week recreational football intervention for untrained women. Scand J Med Sci Sports 20(Suppl 1):24–30. https://doi.org/10.1111/j.1600-0838.2009.01050.x
Barene S, Krustrup P, Jackman SR, Brekke OL, Holtermann A (2013) Do soccer and Zumba exercise improve fitness and indicators of health among female hospital employees? A 12-week RCT. Scand J Med Sci Sports 24(6):990–999. https://doi.org/10.1111/sms.12138
Baumgartner RN (2000) Body composition in healthy aging. Ann N Y Acad Sci 904:437–448
Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B (2018) IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Prac 138:271–281. https://doi.org/10.1016/J.DIABRES.2018.02.023
Connolly LJ, Nordsborg NB, Nyberg M, Weihe P, Krustrup P, Mohr M (2016) Low-volume high-intensity swim training is superior to high-volume low-intensity training in relation to insulin sensitivity and glucose control in inactive middle-aged women. Eur J Appl Physiol 116(10):1889–1897. https://doi.org/10.1007/s00421-016-3441-8
Danish Veterinary and Food Administration (2013) De officielle kostråd [The official dietary advice]. 2013:1–28. https://altomkost.dk/english/#c41067. Accessed 20 Dec 2018
de Sousa MV, Fukui R, Krustrup P, Pereira RM, Silva PR, Rodrigues AC, de Andrade JL, Hernandez AJ, da Silva ME (2014) Positive effects of football on fitness, lipid profile, and insulin resistance in Brazilian patients with type 2 diabetes. Scand J Med Sci Sports 24(S1):57–65
de Sousa MV, Fukui R, Krustrup P, Dagogo-Jack S, Rossi da Silva ME (2017) Combination of recreational soccer and caloric restricted diet reduces markers of protein catabolism and cardiovascular risk in patients with type 2 diabetes. J Nutr Health Aging. https://doi.org/10.1007/s12603-015-0708-4
Devries MC, Hamadeh MJ, Phillips SM, Tarnopolsky MA (2006) Menstrual cycle phase and sex influence muscle glycogen utilization and glucose turnover during moderate-intensity endurance exercise. Am J Physiol Regul Integr Comp Physiol 291(4):1120–1128
Donahue KE, Mielenz TJ, Sloane PD, Callahan LF, Devellis RF (2006) Identifying supports and barriers to physical activity in patients at risk for diabetes. Prev Chronic Dis 3:A119
Durrer C, Robinson E, Wan Z, Martinez N, Hummel ML, Jenkins NT, Kilpatrick MW, Little JP (2015) Differential impact of acute high-intensity exercise on circulating endothelial microparticles and insulin resistance between overweight/obese males and females. PLoS ONE 24:10
Elbe AM, Strahler K, Krustrup P, Wikman J, Stelter R (2010) Experiencing flow in different types of physical activity intervention programs: three randomized studies. Scand J Med Sci Sports 20(Suppl 1):111–117
Esbjörnsson-Liljedahl M, Sundberg CJ, Norman B, Jansson E (1999) Metabolic response in type I and type II muscle fibers during a 30-s cycle sprint in men and women. J Appl Physiol (1985) 87(4):1326–1332
Flores-Le Roux JA, Comin J, Pedro-Botet J, Benaiges D, Puig-de Dou J, Chillarón JJ, Goday A, Bruguera J, Cano-Perez JF (2011) Seven-year mortality in heart failure patients with undiagnosed diabetes: an observational study. Cardiovasc Diabetol 10:39. https://doi.org/10.1186/1475-2840-10-39
Fløtum LA, Ottesen LS, Krustrup P, Mohr M (2016) Evaluating a nationwide recreational football intervention: recruitment, attendance, adherence, exercise intensity, and health effects. Biomed Res Int 2016:7231545. https://doi.org/10.1155/2016/7231545
Gouni-Berthold I, Berthold HK, Mantzoros CS, Böhm M, Krone W (2008) Sex disparities in the treatment and control of cardiovascular risk factors in type 2 diabetes. Diabetes Care 31(7):1389–1391. https://doi.org/10.2337/dc08-0194
Helge EW, Aagaard P, Jakobsen MD, Sundstrup E, Randers MB, Karlsson MK, Krustrup P (2010) Recreational football training decreases risk factors for bone fractures in untrained premenopausal women. Scand J Med Sci Sports 1:31–39
Helge EW, Randers MB, Hornstrup T, Nielsen JJ, Blackwell J, Jackman SR, Krustrup P (2014a) Street football is a feasible health-enhancing activity for homeless men: biochemical bone marker profile and balance improved. Scand J Med Sci Sports 24(Suppl 1):122–129. https://doi.org/10.1111/sms.12244
Helge EW, Andersen TR, Schmidt JF, Jørgensen NR, Hornstrup T, Krustrup P, Bangsbo J (2014b) Recreational football improves bone mineral density and bone turnover marker profile in elderly men. Scand J Med Sci Sports 24(Suppl 1):98–104. https://doi.org/10.1111/sms.12239
Jagannathan R, Bergman M (2017) Use of 1-h post-load plasma glucose concentration to identify individuals at high risk of developing Type 2 diabetes. Diabet Med 34(7):877–878. https://doi.org/10.1111/dme.13370
Jepson R, Harris FM, Bowes A, Robertson R, Avan G, Sheikh A (2012) Physical activity in South Asians: an in-depth qualitative study to explore motivations and facilitators. PLoS ONE 7(10):e45333. https://doi.org/10.1371/journal.pone.0045333
Kautzky-Willer A, Kamyar MR, Gerhat D, Handisurya A, Stemer G, Hudson S, Luger A, Lemmens-Gruber R (2010) Sex-specific differences in metabolic control, cardiovascular risk, and interventions in patients with type 2 diabetes mellitus. Gend Med 7(6):571–583. https://doi.org/10.1016/j.genm.2010.12.00
Kharal PM, Prasad PN, Acharya RP (2013) Gross correlation between waist hip ratio and blood sugar level in a village. JNMA J Nepal Med Assoc 52(190):361–364
Krustrup P, Nielsen JJ, Krustrup BR, Christensen JF, Pedersen H, Randers MB, Aagaard P, Petersen AM, Nybo L, Bangsbo J (2009) Recreational soccer is an effective health-promoting activity for untrained men. Br J Sports Med 43(11):825–831. https://doi.org/10.1136/bjsm.2008.053124
Krustrup P, Dvorak J, Junge A, Bangsbo J (2010a) Executive summary: the health and fitness benefits of regular participation in small-sided football games. Scand J Med Sci Sports 20(Suppl 1):132–135. https://doi.org/10.1111/j.1600-0838.2010.01106.x
Krustrup P, Hansen PR, Randers MB, Nybo L, Martone D, Andersen LJ, Bune LT, Junge A, Bangsbo J (2010b) Beneficial effects of recreational football on the cardiovascular risk profile in untrained premenopausal women. Scand J Med Sci Sports 20(Suppl 1):40–49. https://doi.org/10.1111/j.1600-0838.2010.01110.x
Krustrup P, Randers MB, Andersen LJ, Jackman SR, Bangsbo J, Hansen PR (2013) Soccer improves fitness and attenuates cardiovascular risk factors in hypertensive men. Med Sci Sports Exerc 45(3):553–560
Krustrup P, Helge EW, Hansen PR, Aagaard P, Hagman M, Randers MB, de Sousa M, Mohr M (2018) Effects of recreational football on women's fitness and health: adaptations and mechanisms. Eur J Appl Physiol 118(1):11–32. https://doi.org/10.1007/s00421-017-3733-7
Lidegaard LP, Schwennesen N, Willaing I, Faerch K (2016) Barriers to and motivators for physical activity among people with Type 2 diabetes: patients' perspectives. Diabet Med 33(12):1677–1685
McQueen MJ, Hawken S, Wang X, Ounpuu S, Sniderman A, Probstfield J, Steyn K, Sanderson JE, Hasani M, Volkova E, Kazmi K, Yusuf S (2008) INTERHEART study investigators. Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): a case-control study. Lancet 372(9634):224–233. https://doi.org/10.1016/S0140-6736(08)61076-4
Metcalfe RS, Babraj JA, Fawkner SG, Vollaard NB (2012) Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. Eur J Appl Physiol 112(7):2767–2775. https://doi.org/10.1007/s00421-011-2254-z
Milanović Z, Pantelić S, Čović N, Sporiš G, Krustrup P (2015) Is recreational soccer effective for improving VO2max a systematic review and meta-analysis. Sports Med 45(9):1339–1353. https://doi.org/10.1007/s40279-015-0361-4
Milanović Z, Pantelić S, Čović N, Sporiš G, Mohr M, Krustrup P (2018) Broad-spectrum physical fitness benefits of recreational football: a systematic review and meta-analysis. Br J Sports Med 1:1. https://doi.org/10.1136/bjsports-2017-097885
Mohr M, Lindenskov A, Holm PM, Nielsen HP, Mortensen J, Weihe P, Krustrup P (2014) Football training improves cardiovascular health profile in sedentary, premenopausal hypertensive women. Scand J Med Sci Sports 24(Suppl 1):36–42. https://doi.org/10.1111/sms.12278
Mohr M, Helge EW, Petersen LF, Lindenskov A, Weihe P, Mortensen J, Jørgensen NR, Krustrup P (2015) Effects of soccer vs swim training on bone formation in sedentary middle-aged women. Eur J Appl Physiol 115(12):2671–2679. https://doi.org/10.1007/s00421-015-3231-8
Nielsen G, Wikman JM, Jensen CJ, Schmidt JF, Gliemann L, Andersen TR (2014) Health promotion: the impact of beliefs of health benefits, social relations and enjoyment on exercise continuation. Scand J Med Sci Sports 24(Suppl 1):66–75. https://doi.org/10.1111/sms.12275
Nordic Council of Ministers (2012) Nordic Nutrition Recommendations. Integrating Nutrition and Physical Activity. 5th ed. Nordic Council of Ministers, ed. Copenhagen, Denmark: Norden. https://www.livsmedelsverket.se/globalassets/publikationsdatabas/andra-sprak/nordic-nutrition-recommendations-2012.pdf. Accessed 20 Dec 2018
Oja P, Titze S, Kokko S, Kujala UM, Heinonen A, Kelly P, Koski P, Foster C (2015) Health benefits of different sport disciplines for adults: systematic review of observational and intervention studies with meta-analysis. Br J Sports Med 49(7):434–440. https://doi.org/10.1136/bjsports-2014-093885
Ottesen L, Jeppesen RS, Krustrup BR (2010) The development of social capital through football and running: studying an intervention program for inactive women. Scand J Med Sci Sports 20(Suppl 1):118–131
Pedersen BK, Saltin B (2015) Exercise as medicine—evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports 25(Suppl 3):1–72. https://doi.org/10.1111/sms.12581
Phillips SM, Atkinson SA, Tarnopolsky MA, MacDougall JD (1993) Gender differences in leucine kinetics and nitrogen balance in endurance athletes. J Appl Physiol (1985) 75(5):2134–2141
Randers MB, Nielsen JJ, Krustrup BR, Sundstrup E, Jakobsen MD, Nybo L, Dvorak J, Bangsbo J, Krustrup P (2010) Positive performance and health effects of a football training program over 12 weeks can be maintained over a 1-year period with reduced training frequency. Scand J Med Sci Sports 20:80–89
Randers MB, Andersen JL, Petersen J, Sundstrup E, Jakobsen MD, Bangsbo J, Saltin B, Krustrup P (2014) Exercise performance and cardiovascular health variables in 70-year-old male soccer players compared to endurance-trained, strength-trained and untrained age-matched men. J Sports Sci 32:1300–1308
Sanal E, Ardic F, Kirac S (2013) Effects of aerobic or combined aerobic resistance exercise on body composition in overweight and obese adults: gender differences. A randomized intervention study. Eur J Phys Rehabil Med 49(1):1–11
Scalzo RL, Peltonen GL, Binns SE, Shankaran M, Giordano GR, Hartley DA, Klochak AL, Lonac MC, Paris HL, Szallar SE, Wood LM, Peelor FF, Holmes WE, Hellerstein MK, Bell C, Hamilton KL, Miller BF (2014) Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training. FASEB J 28(6):2705–2714. https://doi.org/10.1096/fj.13-246595
Schmidt JF, Andersen LJ, Uth J, Hornstrup T, Christensen J, Midtgaard J, Brasso K, Krustrup P, Rørth M, Hansen PR (2017) Cardiac structure and function in men with prostate cancer receiving androgen-deprivation therapy and the effects of recreational small-sided football training: a randomized controlled trial. World J Cardiovasc Diseases 7:308–322
Skoradal MB, Weihe P, Patursson P, Mortensen J, Connolly L, Krustrup P, Mohr M (2018a) Football training improves metabolic and cardiovascular health status in 55- to 70-year-old women and men with prediabetes. Scand J Med Sci Sports 28(Suppl 1):42–51. https://doi.org/10.1111/sms.13081
Skoradal MB, Helge EW, Jørgensen NR, Mortensen J, Weihe P, Krustrup P, Mohr M (2018b) Osteogenic impact of football training in 55- to 70-year-old women and men with prediabetes. Scand J Med Sci Sports 28(Suppl 1):52–60. https://doi.org/10.1111/sms.13252
Smith GI, Atherton P, Villareal DT, Frimel TN, Rankin D, Rennie MJ, Mittendorfer B (2008) Differences in muscle protein synthesis and anabolic signaling in the postabsorptive state and in response to food in 65–80 year old men and women. PLoS ONE 3(3):e1875. https://doi.org/10.1371/journal.pone.0001875
Tarnopolsky LJ, MacDougall JD, Atkinson SA, Tarnopolsky MA, Sutton JR (1990) Gender differences in substrate for endurance exercise. J Appl Physiol (1985) 68(1):302–308
Uth J, Schmidt JF, Christensen JF, Hornstrup T, Andersen LJ, Hansen PR, Christensen KB, Andersen LL, Helge EW, Brasso K, Rørth M, Krustrup P, Midtgaard J (2013) Effects of recreational soccer in men with prostate cancer undergoing androgen deprivation therapy: study protocol for the 'FC Prostate' randomized controlled trial. BMC Cancer 13:595. https://doi.org/10.1186/1471-2407-13-595
Uth J, Hornstrup T, Schmidt JF, Christensen JF, Frandsen C, Christensen KB, Helge EW, Brasso K, Rørth M, Midtgaard J, Krustrup P (2014) Football training improves lean body mass in men with prostate cancer undergoing androgen deprivation therapy. Scand J Med Sci Sports 24(S1):105–112
Uth J, Hornstrup T, Christensen JF, Christensen KB, Jørgensen NR, Helge EW, Schmidt JF, Brasso K, Helge JW, Jakobsen MD, Andersen LL, Rørth M, Midtgaard J, Krustrup P (2016a) Football training in men with prostate cancer undergoing androgen deprivation therapy: activity profile and short-term skeletal and postural balance adaptations. Eur J Appl Physiol 116(3):471–480. https://doi.org/10.1007/s00421-015-3301-y
Uth J, Hornstrup T, Christensen JF, Christensen KB, Jørgensen NR, Schmidt JF, Brasso K, Jakobsen MD, Sundstrup E, Andersen LL, Rørth M, Midtgaard J, Krustrup P, Helge EW (2016b) Efficacy of recreational football on bone health, body composition, and physical functioning in men with prostate cancer undergoing androgen deprivation therapy: 32-week follow-up of the FC prostate randomised controlled trial. Osteoporos Int 27(4):1507–1518. https://doi.org/10.1007/s00198-015-3399-0
Uth J, Fristrup B, Haahr RD, Brasso K, Helge JW, Rørth M, Midtgaard J, Helge EW, Krustrup P (2018) Football training over 5 years is associated with preserved femoral bone mineral density in men with prostate cancer. Scand J Med Sci Sports 28(S1):61–73
Veyhe AS, Andreassen J, Halling J, Grandjean P, Petersen MS, Weihe P (2018) Prevalence of type 2 diabetes and prediabetes in the Faroe Islands. Diabetes Res Clin Pract 140:162–173. https://doi.org/10.1016/j.diabres.2018.03.036
Veyhe AS, Andreassen J, Halling J, Grandjean P, Petersen MS, Weihe P (2019) Prevalence of prediabetes and type 2 diabetes in two non-random populations aged 44–77 years in the Faroe Islands of type 2 diabetes and prediabetes in the Faroe Islands. J Clin Transla Endocrin 16:1–8. https://doi.org/10.1016/j.cte.2019.100.187
Wheeler ML, Dunbar SA, Jaacks LM, Karmally W, Mayer-Davis EJ, Wylie-Rosett J, Yancy WS (2012) Macronutrients, food groups, and eating patterns in the management of diabetes: a systematic review of the literature, 2010. Diabetes Care 35:434–445
Williams NH, Hendry M, France B, Lewis R, Wilkinson C (2007) Effectiveness of exercise-referral schemes to promote physical activity in adults: systematic review. Br J Gen Pract 57:979–986
Yang P, Swardfager W, Fernandes D, Laredo S, Tomlinson G, Oh PI, Thomas S (2017) Finding the optimal volume and intensity of resistance training exercise for Type 2 diabetes: the FORTE Study, a Randomized Trial. Diabetes Res Clin Pract Diabetes Res Clin Pract 130:98–107. https://doi.org/10.1016/j.diabres.2017.05.019
Acknowledgements
We would like to express our appreciation of the outstanding efforts and positive attitude of the participants. In addition, we are extremely grateful for the technical assistance provided by Sólfríð Skoradal, Jan Poulsen, Annika Gleðisheygg, Hjalti Gleðisheygg, Charlotta Nielsen, Brandur Jacobsen, Johild Dulavík, Hildigunn Steinholm, Ivy Hansen, Gunnrið Jóannesarson, Ann Østerø, Nina Djurhuus, Ebba Andreassen, Maud av Fløtum, Súsanna Olsen, Synøva Hansen, Ronnie Midjord, Noomi Holm, Virgar Hvidbro, Guðrið Andorsdóttir, and Jens Jung Nielsen. We would also like to thank Prof. Pál Weihe, Prof. Jann Mortensen, PhD-student Poula Patursson, and MD Jens Andreassen for their invaluable support. The study was supported by a grant from the Faroese Research Council (Sjúkrakassagrunnurin), as well as by the Faroese Football Association (Fótbóltssamband Føroya; FSF) and the Faroese Diabetes Organisation (Diabetesfelag Føroya).
Author information
Authors and Affiliations
Contributions
MM and PK conceived and designed the research project. MM, MS, TR and PK conducted the experiments. MM, MS and TR analyzed the data. MM and PK wrote the manuscript with inputs from MS and TR. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Communicated by Massimo Pagani.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mohr, M., Skoradal, MB., Andersen, T.R. et al. Gender-dependent evaluation of football as medicine for prediabetes. Eur J Appl Physiol 119, 2011–2024 (2019). https://doi.org/10.1007/s00421-019-04188-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00421-019-04188-5
Keywords
- Soccer
- VO2peak
- Fat percentage
- Blood pressure
- Cholesterol
- Cardiometabolic fitness