Advertisement

European Journal of Applied Physiology

, Volume 119, Issue 8, pp 1769–1777 | Cite as

Low-frequency ventilatory oscillations in hypoxia are a major contributor to the low-frequency component of heart rate variability

  • Eric HermandEmail author
  • Aurélien Pichon
  • François J. Lhuissier
  • Jean-Paul Richalet
Original Article

Abstract

Purpose

Heart rate variability (HRV) may be influenced by several factors, such as environment (hypoxia, hyperoxia, hypercapnia) or physiological demand (exercise). In this retrospective study, we tested the hypothesis that inter-beat (RR) intervals in healthy subjects exercising under various environmental stresses exhibit oscillations at the same frequency than ventilatory oscillations.

Methods

Spectra from RR intervals and ventilation (\(\dot{V}\)E) were collected from 37 healthy young male subjects who participated in 5 previous studies focused on ventilatory oscillations (or periodic breathing) during exercise in hypoxia, hyperoxia and hypercapnia. Bland and Altman test and multivariate regressions were then performed to compare respective frequencies and changes in peak powers of the two signals.

Results

Fast Fourier analysis of RR and \(\dot{V}\)E signals showed that RR was oscillating at the same frequency than periodic breathing, i.e., ~ 0.09 Hz (11 s). During exercise, in these various conditions, the difference between minimum and maximum HRV peak power was positively correlated to the same change in ventilation peak power (P < 0.05). Low-frequency (LF) peak power was correlated to tidal volume (P < 0.01) and breathing frequency (P < 0.001).

Conclusions

This study suggests that low-frequency ventilatory oscillations in hypoxia are a major contributor to the LF band power of heart rate variability.

Clinical Trial Reg. no.

NCT02201875.

Keywords

Heart rate variability Hypoxia Exercise Control of ventilation Periodic breathing 

Abbreviations

ACZ

Acetazolamide

ANOVA

Analysis of variance

CHF

Chronic heart failure

FFT

Fast Fourier transform

HF

High frequency

HR

Heart rate

HRV

Heart rate variability

LF

Low frequency

LOA

Limits of agreement

MAP

Maximal aerobic power

PB

Periodic breathing

RR

Interbeat interval

SD

Standard deviation

Ti

Inspiratory time

Ttot

Total respiratory cycle time

\(\dot{V}E\)

Ventilation

VLF

Very low frequency

VT

Tidal volume

Notes

Author contributions

EH, AP and JPR conceived and designed research. EH, JPR and FL conducted experiments. EH analyzed data. EH wrote the manuscript. All authors read and approved the manuscript.

References

  1. Ainslie PN, Lucas SJE, Burgess KR (2013) Breathing and sleep at high altitude. Respir Physiol Neurobiol 188:233–256.  https://doi.org/10.1016/j.resp.2013.05.020 CrossRefPubMedGoogle Scholar
  2. Akselrod S, Gordon D, Ubel FA et al (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222CrossRefGoogle Scholar
  3. Aysin B, Aysin E (2006) Effect of respiration in heart rate variability (HRV) analysis. In: 2006 international conference of the IEEE Engineering in Medicine and Biology Society. IEEE, New York, NY, pp 1776–1779Google Scholar
  4. Beda A, Simpson DM, Carvalho NC, Carvalho ARS (2014) Low-frequency heart rate variability is related to the breath-to-breath variability in the respiratory pattern. Psychophysiology 51:197–205.  https://doi.org/10.1111/psyp.12163 CrossRefPubMedGoogle Scholar
  5. Berntson GG, Cacioppo JT, Quigley KS (1993) Respiratory sinus arrhythmia: autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology 30:183–196CrossRefPubMedGoogle Scholar
  6. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRefGoogle Scholar
  7. Brack T, Randerath W, Bloch KE (2012) Cheyne–Stokes respiration in patients with heart failure: prevalence, causes, consequences and treatments. Respiration 83:165–176.  https://doi.org/10.1159/000331457 CrossRefPubMedGoogle Scholar
  8. Brown SJ, Howden R (2008) The effects of a respiratory acidosis on human heart rate variability. Adv Exp Med Biol 605:361–365.  https://doi.org/10.1007/978-0-387-73693-8_63 CrossRefPubMedGoogle Scholar
  9. Brown SJ, Barnes MJ, Mündel T (2014) Effects of hypoxia and hypercapnia on human HRV and respiratory sinus arrhythmia. Acta Physiol Hung 101:263–272.  https://doi.org/10.1556/APhysiol.101.2014.3.1 CrossRefPubMedGoogle Scholar
  10. American College of Sports Medicine, Riebe D, Ehrman JK, et al (eds) (2018) ACSM’s guidelines for exercise testing and prescription, Tenth edition. Wolters Kluwer, PhiladelphiaGoogle Scholar
  11. Corrà U, Giordano A, Bosimini E et al (2002) Oscillatory ventilation during exercise in patients with chronic heart failure: clinical correlates and prognostic implications. Chest 121:1572–1580CrossRefPubMedGoogle Scholar
  12. De Burgh Daly M (2011) Interactions between respiration and circulation. In: Terjung R (ed) Comprehensive physiology. Wiley, Hoboken, NJ.  https://doi.org/10.1002/cphy.cp030216
  13. Daoud M, Ravier P, Buttelli O (2018) Use of cardiorespiratory coherence to separate spectral bands of the heart rate variability. Biomed Signal Process Control 46:260–267.  https://doi.org/10.1016/j.bspc.2018.08.003 CrossRefGoogle Scholar
  14. Duffin J (2011) Measuring the respiratory chemoreflexes in humans. Respir Physiol Neurobiol 177:71–79.  https://doi.org/10.1016/j.resp.2011.04.009 CrossRefPubMedGoogle Scholar
  15. Electrophysiology Task Force of the European Society of Cardiology the North American Society of Pacing (1996) Heart rate variability. Circulation 93:1043–1065.  https://doi.org/10.1161/01.CIR.93.5.1043 CrossRefGoogle Scholar
  16. Estévez M, Machado C, Leisman G et al (2015) Spectral analysis of heart rate variability. Int J Disability Hum Dev 15:5–17.  https://doi.org/10.1515/ijdhd-2014-0025 CrossRefGoogle Scholar
  17. Florea VG, Cohn JN (2014) The autonomic nervous system and heart failure. Circ Res 114:1815–1826.  https://doi.org/10.1161/CIRCRESAHA.114.302589 CrossRefPubMedGoogle Scholar
  18. Garde A, Giraldo BF, Jané R, Sörnmo L (2009) Time-varying respiratory pattern characterization in chronic heart failure patients and healthy subjects. Conf Proc IEEE Eng Med Biol Soc 2009:4007–4010.  https://doi.org/10.1109/IEMBS.2009.5333501 CrossRefPubMedGoogle Scholar
  19. Garde A, Giraldo BF, Jane R et al (2012) Periodic breathing during ascent to extreme altitude quantified by spectral analysis of the respiratory volume signal. Conf Proc IEEE Eng Med Biol Soc 2012:707–710.  https://doi.org/10.1109/EMBC.2012.6346029 CrossRefPubMedGoogle Scholar
  20. Gauda EB, Martin RJ (2012) Control of breathing. In: Avery's diseases of the newborn, 9th edn. Elsevier Inc., pp 584–597.  https://doi.org/10.1016/B978-1-4377-0134-0.10043-5
  21. Guzzetti S, Magatelli R, Borroni E, Mezzetti S (2001) Heart rate variability in chronic heart failure. Auton Neurosci 90:102–105.  https://doi.org/10.1016/S1566-0702(01)00274-0 CrossRefPubMedGoogle Scholar
  22. Hermand E, Lhuissier FJ, Larribaut J, et al. (2015a) Ventilatory oscillations at exercise: effects of hyperoxia, hypercapnia, and acetazolamide. Physiol Rep 3: doi: 10.14814/phy2.12446.Google Scholar
  23. Hermand E, Pichon A, Lhuissier FJ, Richalet J-P (2015b) Periodic breathing in healthy humans at exercise in hypoxia. J Appl Physiol 118:115–123.  https://doi.org/10.1152/japplphysiol.00832.2014 CrossRefPubMedGoogle Scholar
  24. Hermand E, Lhuissier FJ, Voituron N, Richalet J-P (2016) Ventilatory oscillations at exercise in hypoxia: a mathematical model. J Theor Biol 411:92–101.  https://doi.org/10.1016/j.jtbi.2016.10.002 CrossRefPubMedGoogle Scholar
  25. Hermand E, Lhuissier FJ, Richalet J-P (2017) Effect of dead space on breathing stability at exercise in hypoxia. Respir Physiol Neurobiol 246:26–32.  https://doi.org/10.1016/j.resp.2017.07.008 CrossRefPubMedGoogle Scholar
  26. Hernandez AB, Patil SP (2016) Pathophysiology of central sleep apneas. Sleep Breath 20:467–482.  https://doi.org/10.1007/s11325-015-1290-z CrossRefPubMedGoogle Scholar
  27. Hung P-H, Lin F-C, Tsai H-C et al (2019) The usefulness of prophylactic use of acetazolamide in subjects with acute mountain sickness. J Chin Med Assoc 82:126–132.  https://doi.org/10.1097/JCMA.0000000000000014 CrossRefPubMedGoogle Scholar
  28. Insalaco G, Salvaggio A, Pomidori L et al (2016) Heart rate variability during sleep at high altitude: effect of periodic breathing. Sleep Breath 20:197–204.  https://doi.org/10.1007/s11325-015-1205-z CrossRefPubMedGoogle Scholar
  29. Latshang TD, Turk AJ, Hess T et al (2013) Acclimatization improves submaximal exercise economy at 5533 m. Scand J Med Sci Sports 23:458–467.  https://doi.org/10.1111/j.1600-0838.2011.01403.x CrossRefPubMedGoogle Scholar
  30. Leung RS, Bradley TD (2001) Sleep apnea and cardiovascular disease. Am J Respir Crit Care Med 164:2147–2165.  https://doi.org/10.1164/ajrccm.164.12.2107045 CrossRefPubMedGoogle Scholar
  31. Leung RST, Floras JS, Lorenzi-Filho G et al (2003) Influence of Cheyne–Stokes respiration on cardiovascular oscillations in heart failure. Am J Respir Crit Care Med 167:1534–1539.  https://doi.org/10.1164/rccm.200208-793OC CrossRefPubMedGoogle Scholar
  32. Liu XX, Lu LL, Zhong CF et al (2001) Analysis of heart rate variability during acute exposure to hypoxia. Space Med Med Eng (Beijing) 14:328–331Google Scholar
  33. McCraty R, Shaffer F (2015) Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Health Med 4:46–61.  https://doi.org/10.7453/gahmj.2014.073 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Oliveira ALMB, Rohan P de A, Gonçalves TR, Soares PP da S (2017) Effects of hypoxia on heart rate variability in healthy individuals: a systematic review. International Journal of Cardiovascular Sciences. doi: 10.5935/2359-4802.20170035.Google Scholar
  35. Olson TP, Johnson BD (2014) Quantifying oscillatory ventilation during exercise in patients with heart failure. Respir Physiol Neurobiol 190:25–32.  https://doi.org/10.1016/j.resp.2013.09.008 CrossRefPubMedGoogle Scholar
  36. Pinna GD, Maestri R, Di Cesare A et al (1995) Very low frequency oscillations of heart period: relationship to respiratory activity and blood pressure in heart failure patients. IEEE Comput Soc Press, pp 553–556Google Scholar
  37. Pinna GD, Maestri R, Rovere MT, Mortara A (1996) An oscillation of the respiratory control system accounts for most of the heart period variability of chronic heart failure patients. Clin Sci 91(Suppl):89–91CrossRefPubMedGoogle Scholar
  38. Pomeranz B, Macaulay RJ, Caudill MA et al (1985) Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol Heart Circ Physiol 248:H151–H153.  https://doi.org/10.1152/ajpheart.1985.248.1.H151 CrossRefGoogle Scholar
  39. Ponikowski P, Chua TP, Piepoli M et al (1998) Ventilatory response to exercise correlates with impaired heart rate variability in patients with chronic congestive heart failure. Am J Cardiol 82:338–344.  https://doi.org/10.1016/S0002-9149(98)00303-8 CrossRefPubMedGoogle Scholar
  40. Povea C, Schmitt L, Brugniaux J et al (2005) Effects of intermittent hypoxia on heart rate variability during rest and exercise. High Alt Med Biol 6:215–225.  https://doi.org/10.1089/ham.2005.6.215 CrossRefPubMedGoogle Scholar
  41. Pöyhönen M, Syväoja S, Hartikainen J et al (2004) The effect of carbon dioxide, respiratory rate and tidal volume on human heart rate variability. Acta Anaesthesiol Scand 48:93–101.  https://doi.org/10.1111/j.1399-6576.2004.00272.x CrossRefPubMedGoogle Scholar
  42. Richalet J-P, Rivera M, Bouchet P et al (2005) Acetazolamide: a treatment for chronic mountain sickness. Am J Respir Crit Care Med 172:1427–1433.  https://doi.org/10.1164/rccm.200505-807OC CrossRefPubMedGoogle Scholar
  43. Sarmiento S, García-Manso JM, Martín-González JM et al (2013) Heart rate variability during high-intensity exercise. J Syst Sci Complex 26:104–116.  https://doi.org/10.1007/s11424-013-2287-y CrossRefGoogle Scholar
  44. Saul JP, Arai Y, Berger RD et al (1988) Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. Am J Cardiol 61:1292–1299CrossRefPubMedGoogle Scholar
  45. Siebenmann C, Ryrsø CK, Oberholzer L et al (2018) Hypoxia-induced vagal withdrawal is independent of the hypoxic ventilatory response in men. J Appl Physiol 126:124–131.  https://doi.org/10.1152/japplphysiol.00701.2018 CrossRefPubMedGoogle Scholar
  46. Tarvainen MP, Niskanen J-P, Lipponen JA et al (2014) Kubios HRV—heart rate variability analysis software. Comput Methods Programs Biomed 113:210–220.  https://doi.org/10.1016/j.cmpb.2013.07.024 CrossRefPubMedGoogle Scholar
  47. Tulppo MP, Mäkikallio TH, Takala TE et al (1996) Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol 271:H244–252PubMedGoogle Scholar
  48. Xu X-Q, Jing Z-C (2009) High-altitude pulmonary hypertension. Eur Respir Rev 18:13–17.  https://doi.org/10.1183/09059180.00011104 CrossRefPubMedGoogle Scholar
  49. Zhang D, She J, Zhang Z, Yu M (2014) Effects of acute hypoxia on heart rate variability, sample entropy and cardiorespiratory phase synchronization. BioMed Eng OnLine 13:73.  https://doi.org/10.1186/1475-925X-13-73 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire HAVAE ‘Handicap, Activité, Vieillissement, Autonomie, Environnement’, E6310Université de Limoges, Faculté Des Sciences Et TechniquesLimoges CedexFrance
  2. 2.Sorbonne Paris Cité, Laboratoire “Hypoxie & Poumon”, E2363Université Paris 13BobignyFrance
  3. 3.Laboratoire MOVEUniversité de Poitiers, E6314PoitiersFrance
  4. 4.Assistance Publique-Hôpitaux de Paris, Hôpital AvicenneService de Physiologie, Explorations Fonctionnelles Et Médecine du SportBobignyFrance
  5. 5.Département MédicalInstitut National de L’Expertise Et de La PerformanceParisFrance

Personalised recommendations