Skip to main content
Log in

Is reaction time altered by mental or physical exertion?

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Reaction time, classically divided into premotor time and electromechanical delay (EMD), can be determinant in daily life or sport situations. While some previous studies reported a negative impact of both muscle and mental fatigue on reaction time, the respective contributions of premotor time and EMD to the changes of reaction time remains unclear. The aim of the study was, therefore, to assess the effects of both muscle and mental effort on reaction time and its components.

Methods

Thirteen subjects performed three conditions (mental effort condition, i.e., 14 min of a mathematical cognitive task; muscle effort condition, i.e., intermittent contractions of the biceps brachii; control condition, i.e., watching a documentary). Before and after each condition, reaction time, premotor time and EMD were measured during voluntary contractions of the biceps brachii. EMD was also measured during evoked contractions of the biceps brachii to separate the parts due to the onset of muscle fascicle motion and the onset of force production.

Results

Reaction time and premotor time remained stable regardless of the condition considered (all P values > 0.05). EMD increased only after the muscle effort condition (+ 25% during voluntary contractions, no significant; + 17% during evoked contractions, P = 0.001), mainly due to an increase in the passive part of the series elastic component.

Conclusion

Our study showed that neither mental nor muscle effort has a negative effect on simple reaction time during voluntary contractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

EMDstim :

Electromechanical delay during electrical stimulation

EMDvol :

Electromechanical delay during voluntary contraction

MVC:

Maximal voluntary contraction

RFD:

Rate of force development

References

  • Bachasson D, Millet GY, Decorte N, Wuyam B, Levy P, Verges S (2013) Quadriceps function assessment using an incremental test and magnetic neurostimulation: a reliability study. J Electromyogr Kinesiol 23(3):649–658

    Article  PubMed  Google Scholar 

  • Begovic H, Zhou G-Q, Li T, Wang Y, Zheng Y-P (2014) Detection of the electromechanical delay and its components during voluntary isometric contraction of the quadriceps femoris muscle. Front Physiol 5:494

    Article  PubMed  PubMed Central  Google Scholar 

  • Boksem MA, Meijman TF, Lorist MM (2005) Effects of mental fatigue on attention: an ERP study. Brain Res Cogn Brain Res 25(1):107–116

    Article  PubMed  Google Scholar 

  • Boksem MA, Meijman TF, Lorist MM (2006) Mental fatigue, motivation and action monitoring. Biol Psychol 72(2):123–132

    Article  PubMed  Google Scholar 

  • Chmura J, Nazar K, Kaciuba-Uscilko H (1994) Choice reaction time during graded exercise in relation to blood lactate and plasma catecholamines thresholds. Int J Sports Med 15(4):172–176

    Article  CAS  PubMed  Google Scholar 

  • Chmura J, Krysztofiak H, Ziemba AW, Nazar K, Kaciuba-Uscilko H (1998) Psychomotor performance during prolonged exercise above and below the blood lactate threshold. Eur J Appl Physiol 77:77–80

    Article  CAS  Google Scholar 

  • Collardeau M, Brisswalter J, Audiffren M (2001) Effects of a prolonged run on simple reaction time of well-trained runners. Percept Mot Skills 93(3):679–689

    Article  CAS  PubMed  Google Scholar 

  • Conchola EC, Thiele RM, Palmer TB, Smith DB, Thompson BJ (2015) Effects of neuromuscular fatigue on electromechanical delay of the leg extensors and flexors in young men and women. Muscle Nerve 52(5):844–851

    Article  PubMed  Google Scholar 

  • Davranche K, Burle B, Audiffren M, Hasbroucq T (2006) Physical exercise facilitates motor processes in simple reaction time performance: an electromyographic analysis. Neurosci Lett 396(1):54–56

    Article  CAS  PubMed  Google Scholar 

  • Der G, Deary IJ (2006) Age and sex differences in reaction time in adulthood: results from the United Kingdom health and lifestyle survey. Psychol Aging 21(1):62

    Article  PubMed  Google Scholar 

  • Diamond A (2013) Executive functions. Annu Rev Psychol 64:135–168

    Article  PubMed  Google Scholar 

  • Esposito F, Cè E, Rampichini S, Limonta E, Venturelli M, Monti E et al (2016) Electromechanical delay components during skeletal muscle contraction and relaxation in patients with myotonic dystrophy type 1. Neuromuscul Disord 26(1):60–72

    Article  PubMed  Google Scholar 

  • Froyd C, Millet GY, Noakes TD (2013) The development of peripheral fatigue and short-term recovery during self-paced high-intensity exercise. J Physiol 591(5):1339–1346

    Article  PubMed  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789

    Article  CAS  PubMed  Google Scholar 

  • Hamsher K, de S, Benton AL (1977) The reliability of reaction time determinations. Cortex 13(3):306–310

    Article  CAS  PubMed  Google Scholar 

  • Hart SG, Staveland LE (1988) Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Hum Ment Workload 1:139–183

    Article  Google Scholar 

  • Hopkins WG (2006) Estimating sample size for magnitude-based inferences. Sport Sci 10:63–70. http://www.sportsci.org/2006/wghss.htm. Accessed Feb 2018

  • Keller-Ross ML, Pereira HM, Pruse J, Yoon T, Schlinder-DeLap B, Nielson KA et al (2014) Stressor-induced increase in muscle fatigability of young men and women is predicted by strength but not voluntary activation. J Appl Physiol 116(7):767–778

    Article  PubMed  PubMed Central  Google Scholar 

  • Klimovitch G (1977) Startle response and muscular fatigue effects upon fractionated hand grip reaction time. J Mot Behav 9(4):285–292

    Article  CAS  PubMed  Google Scholar 

  • Laborde S, Raab M (2013) The tale of hearts and reason: the influence of mood on decision making. J Sport Exerc Psychol 35(4):339–357

    Article  PubMed  Google Scholar 

  • Langner R, Steinborn MB, Chatterjee A, Sturm W, Willmes K (2010a) Mental fatigue and temporal preparation in simple reaction-time performance. Acta Psychol 133(1):64–72

    Article  Google Scholar 

  • Langner R, Willmes K, Chatterjee A, Eickhoff SB, Sturm W (2010b) Energetic effects of stimulus intensity on prolonged simple reaction-time performance. Psychol Res 74(5):499–512

    Article  PubMed  Google Scholar 

  • Le Mansec Y, Nordez A, Dorel S, Jubeau M (2017) Reaction time can be measured during voluntary contractions with electrode array. Clin Physiol Funct Imaging 38(2):338–340

    Article  PubMed  Google Scholar 

  • Le Mansec Y, Pageaux B, Nordez A, Dorel S, Jubeau M (2018) Mental fatigue alters the speed and the accuracy of the ball in table tennis. J Sports Sci 36(23):2751–2759

    Article  PubMed  Google Scholar 

  • Lorist MM, Klein M, Nieuwenhuis S, Jong R, Mulder G, Meijman TF (2000) Mental fatigue and task control: planning and preparation. Psychophysiology 37(5):614–625

    Article  CAS  PubMed  Google Scholar 

  • Lorist MM, Boksem MA, Ridderinkhof KR (2005) Impaired cognitive control and reduced cingulate activity during mental fatigue. Cogn Brain Res 24(2):199–205

    Article  Google Scholar 

  • Maffiuletti NA, Aagaard P, Blazevitch AJ, Folland J, Tillin N, Duchateau J (2016) Rate of force development: physiological and methodological considerations. Eur J Appl Physiol 116(6):1091–1116

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcora SM, Staiano W, Manning V (2009) Mental fatigue impairs physical performance in humans. J Appl Physiol 106(3):857–864

    Article  PubMed  Google Scholar 

  • Matthews G, Campbell SE, Falconer S, Joyner LA, Huggins J, Gilliland K, Grier R, Warm JS (2002) Fundamental dimensions of subjective state in performance settings: task engagement, distress, and worry. Emotion 2(4):315–340

    Article  PubMed  Google Scholar 

  • Minshull C, Gleeson NP, Eston RG, Bailey A, Rees D (2009) Single measurement reliability and reproducibility of volitional and magnetically-evoked indices of neuromuscular performance in adults. J Electromyogr Kinesiol 19(5):1013–1023

    Article  CAS  PubMed  Google Scholar 

  • Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD (2000) The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol 41(1):49–100

    Article  CAS  PubMed  Google Scholar 

  • Nordez A, Gallot T, Catheline S, Guével A, Cornu C, Hug F (2009) Electromechanical delay revisited using very high frame ultrasound. J Appl Physiol 106(6):1970–1975

    Article  PubMed  Google Scholar 

  • Noteboom JT, Fleschner M, Enoka RM (2001) Activation of the arousal response can impair performance on a simple motor task. J Appl Physiol 91(2):821–831

    Article  CAS  PubMed  Google Scholar 

  • Pääsuke M, Ereline J, Gapeyeva H (1999) Neuromuscular fatigue during repeated exhaustive submaximal static contractions of knee extensor muscles in endurance-trained, power-trained and untrained men. Acta Physiol Scand 166(4):319–326

    Article  PubMed  Google Scholar 

  • Pachella RG (1974) The interpretation of reaction time in information processing research. In: Kantowitz BH (ed) Human information processing: tutorials in performance and cognition. Lawrence Erlbaum, Hillsdale, pp 41–82

    Google Scholar 

  • Pageaux B, Lepers R (2018) The effects of mental fatigue on sport-related performance. Prog Brain Res 240:291–315

    Article  PubMed  Google Scholar 

  • Pageaux B, Marcora SM, Lepers R (2013) Prolonged mental exertion does not alter neuromuscular function of the knee extensors. Med Sci Sports Exerc 45(12):2254–2264

    Article  PubMed  Google Scholar 

  • Pageaux B, Lepers R, Dietz KC, Marcora SM (2014) Response inhibition impairs subsequent self-paced endurance performance. Eur J Appl Physiol 114(5):1095–1105

    Article  PubMed  Google Scholar 

  • Pageaux B, Marcora SM, Rozand V, lepers R (2015) Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise. Front Hum Neurosci 9:67

    Article  PubMed  PubMed Central  Google Scholar 

  • Rampichini S, Cè E, Limonta E, Espositi F (2014) Effects of fatigue on the electromechanical delay components in gastrocnemoius medialis muscle. Eur J Appl Physiol 114(3):639–651

    Article  PubMed  Google Scholar 

  • Roelands B, van Cutsem J, Marcora S, Meeusen R (2017) Does a mentally demanding cognitive task influence motor reaction time? Med Sci Sports Exerc 49(5S):672

    Article  Google Scholar 

  • Rozand V, Lepers R (2017) Influence of mental fatigue on physical performance. Mov Sport Sci 1(95):3–12

    Article  Google Scholar 

  • Rozand V, Pageaux B, Marcora SM, Papaxanthis C, Lepers R (2014a) Does mental exertion alter maximal muscle activation? Front Hum Neurosci 8:755

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozand V, Lebon F, Papaxanthis C, Lepers R (2014b) Does a mental training session induce neuromuscular fatigue? Med Sci Sports Exerc 46(10):1981–1989

    Article  PubMed  Google Scholar 

  • Rozand V, Lebon F, Papaxanthis C, Lepers R (2015) Effect of mental fatigue on speed-accuracy trade-off. Neuroscience 297:219–230

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RA, Alan Stull G (1970) Premotor and motor reaction time as a function of preliminary muscular tension. J Mot Behav 2(2):96–110

    Article  CAS  PubMed  Google Scholar 

  • Silverman IW (2006) Sex differences in simple visual reaction time: a historical meta-analysis. Sex Roles 54(1–2):57–68

    Article  Google Scholar 

  • Sjöberg H (1975) Relations between heart rate, reaction speed, and subjective effort at different work loads on a bicycle ergometer. J Hum Stress 1(4):21–27

    Article  Google Scholar 

  • Smith MR, Coutts AJ, Merlini M, Deprez D, Lenoir M, Marcora SM (2016a) Mental fatigue impairs soccer-specific physical and technical performance. Med Sci Sports Exerc 48(2):267–276

    Article  PubMed  Google Scholar 

  • Smith MR, Zeuwts L, Lenoir M, Hens N, De Jong LMS, Coutts AJ (2016b) Mental fatigue impairs soccer-specific decision-making skill. J Sports Sci 34(14):1297–1304

    Article  PubMed  Google Scholar 

  • Solnik S, Rider P, Steinweg K, De Vita P, Hortobágyi T (2010) Teager-Kaiser energy operator signal conditioning improves EMG onset detection. Eur J Appl Physiol 110(3):489–498

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinborn MB, Langner R, Flehmig HC, Huestegge L (2016) Everyday life cognitive instability predicts simple reaction time variability: analysis of reaction time distributions and delta plots. Appl Cogn Psychol 30:92–102

    Article  Google Scholar 

  • Steinborn MB, Langner R, Huestegge L (2017) Mobilizing cognition for speeded action: try-harder instructions promote motivated readiness in the constant-foreperiod paradigm. Psychol Res 81(6):1135–1151

    Article  PubMed  Google Scholar 

  • Stull GA, Kearney JT (1978) Effects of variable fatigue levels on reaction-time components. J Mot Behav 10(3):223–231

    Article  CAS  PubMed  Google Scholar 

  • Terry PC, Lane AM, Fogarty GJ (2003) Construct validity of the profile of mood states-adolescents for use with adults. Psychol Sports Exerc 4(2):125–139

    Article  Google Scholar 

  • Tillin NA, Pain MT, Folland JP (2012) Contraction type influences the human ability to use the available torque capacity of skeletal muscle during explosive efforts. Proc Biol Sci 279(1736):2106–2115

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomporowski PD (2003) Effects of acute bouts of exercise on cognition. Acta Psychol 112(3):297–324

    Article  Google Scholar 

  • van der Linden D, Frese M, Meijman TF (2003) Mental fatigue and the control of cognitive processes: effects on perseveration and planning. Acta Psychol 113(1):45–65

    Article  Google Scholar 

  • Weiss AD (1965) The locus of reaction time change with set, motivation, and age. J Gerontol 20:60–64

    Article  CAS  PubMed  Google Scholar 

  • Welford AT (1980) Choice reaction time: basic concepts. In: Welford AT (ed) Reaction times. Academic Press, New York, pp 73–128

    Google Scholar 

Download references

Acknowledgements

The authors thank Valentin Doguet for his valuable help and technical assistance.

Funding

The study was supported by Grants from the French Ministry of Sports (contract no. 15r16).

Author information

Authors and Affiliations

Authors

Contributions

YL, SD, AN and MJ conceived or designed research. YL, SD, AN and MJ participated in data acquisition, analyzed or interpreted the data. YL, SD, AN and MJ drafted and revised the work. YL, SD, AN and MJ approved the final version of the manuscript.

Corresponding author

Correspondence to Marc Jubeau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Nicolas Place.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Mansec, Y., Dorel, S., Nordez, A. et al. Is reaction time altered by mental or physical exertion?. Eur J Appl Physiol 119, 1323–1335 (2019). https://doi.org/10.1007/s00421-019-04124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-019-04124-7

Keywords

Navigation