Advertisement

European Journal of Applied Physiology

, Volume 119, Issue 5, pp 1065–1074 | Cite as

Dose–response relationship of intermittent normobaric hypoxia to stimulate erythropoietin in the context of health promotion in young and old people

  • Alexander TörpelEmail author
  • Beate Peter
  • Dennis Hamacher
  • Lutz Schega
Original Article

Abstract

Purpose

Erythropoietin (EPO) has multifactorial positive effects on health and can be increased by intermittent normobaric hypoxia (IH). Recommendations about the intensity and duration of IH to increase EPO exist, but only for young people. Therefore, the aim of the study was to investigate the dose–response relationship regarding the duration of hypoxia until an EPO expression and the amount of EPO expression in old vs. young cohorts.

Methods

56 young and 67 old people were assigned to two separate investigations with identical study designs (3-h hypoxic exposure) but with different approaches to adjust the intensity of hypoxia: (i) the fraction of inspired oxygen (FiO2) was 13.5%; (ii) the FiO2 was individually adjusted to an oxygen saturation of the blood of 80%. Age groups were randomly assigned to a hypoxia or control group (normoxic exposure). EPO was assessed before, during (90 and 180 min), and 30 min after the hypoxia.

Results

EPO increased significantly after 180 min in both cohorts and in both investigations [old: (i) + 16%, p = 0.007 and (ii) + 14%, p < 0.001; young: (i) + 27%, p < 0.001 and (ii) + 45%, p = 0.007]. In investigation (i), EPO expression was significantly higher in young than in old people after 180 min of hypoxic exposure (p = 0.024) and 30 min afterwards (p = 0.001).

Conclusion

The results indicate that after a normobaric hypoxia of 180 min, EPO increases significantly in both age cohorts. The amount of EPO expression is significantly higher in young people during the same internal intensity of hypoxia than in old people.

Keywords

EPO Aging Hypoxic intensity Hypoxic duration Altitude training 

Abbreviations

CaO2

Arterial oxygen content

CG

Control group

EPO

Erythropoietin

FiO2

Fraction of inspired oxygen

Hb

Hemoglobin

Hct

Hematocrit

HG

Hypoxia group

HIF

Hypoxia-inducible factor

H-ext

Investigation where the intensity of hypoxia was applied to external parameters

H-int

Investigation where the intensity of hypoxia was applied to internal parameters

IH

Intermittent hypoxia

RBC

Red blood cells

SpO2

Oxygen saturation of the blood

TrkB

Receptor tyrosine kinase B

Notes

Compliance with ethical standards

Conflict of interest

None of the authors have any conflicts of interests.

References

  1. Ahmed M, Giesbrecht GG, Serrette C, Georgopoulos D, Anthonisen NR (1991) Ventilatory response to hypoxia in elderly humans. Respir Physiol 83(3):343–351CrossRefGoogle Scholar
  2. Bartesaghi S, Marinovich M, Corsini E, Galli CL, Viviani B (2005) Erythropoietin. A novel neuroprotective cytokine. Neurotoxicology 26(5):923–928.  https://doi.org/10.1016/j.neuro.2005.01.016 CrossRefGoogle Scholar
  3. Bärtsch P, Gibbs JSR (2007) Effect of altitude on the heart and the lungs. Circulation 116(19):2191–2202.  https://doi.org/10.1161/CIRCULATIONAHA.106.650796 CrossRefGoogle Scholar
  4. Borson S (2010) Cognition, aging, and disabilities: conceptual issues. Phys Med Rehabilit Clin N Am 21(2):375–382.  https://doi.org/10.1016/j.pmr.2010.01.001 CrossRefGoogle Scholar
  5. Brines M, Cerami A (2006) Discovering erythropoietin’s extra-hematopoietic functions: biology and clinical promise. Kidney Int 70(2):246–250.  https://doi.org/10.1038/sj.ki.5001546 CrossRefGoogle Scholar
  6. Burtscher M, Pachinger O, Ehrenbourg I, Mitterbauer G, Faulhaber M, Pühringer R, Tkatchouk E (2004) Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int J Cardiol 96(2):247–254.  https://doi.org/10.1016/j.ijcard.2003.07.021 CrossRefGoogle Scholar
  7. Chacaroun S, Borowik A, Morrison SA, Baillieul S, Flore P, Doutreleau S, Verges S (2017) Physiological responses to two hypoxic conditioning strategies in healthy subjects. Front Physiol 7(Pt 2):1127.  https://doi.org/10.3389/fphys.2016.00675 Google Scholar
  8. Chapman RF, Stray-Gundersen J, Levine BD (1998) Individual variation in response to altitude training. J Appl Physiol 85(4):1448–1456CrossRefGoogle Scholar
  9. Chapman RF, Stray-Gundersen J, Levine BD (2010) Epo production at altitude in elite endurance athletes is not associated with the sea level hypoxic ventilatory response. J Sci Med Sport 13(6):624–629.  https://doi.org/10.1016/j.jsams.2010.02.001 CrossRefGoogle Scholar
  10. Christou DD, Seals DR (2008) Decreased maximal heart rate with aging is related to reduced-adrenergic responsiveness but is largely explained by a reduction in intrinsic heart rate. J Appl Physiol 105(1):24–29.  https://doi.org/10.1152/japplphysiol.90401.2008 CrossRefGoogle Scholar
  11. Costa E, Fernandes J, Ribeiro S, Sereno J, Garrido P, Rocha-Pereira P, Coimbra S, Catarino C, Belo L, Bronze-da-Rocha E, Vala H, Alves R, Reis F, Santos-Silva A (2013) Aging is associated with impaired renal function, INF-gamma induced inflammation and with alterations in iron regulatory proteins gene expression. Aging Dis 5(6):356–365.  https://doi.org/10.14366/AD.2014.0500356 Google Scholar
  12. Eckardt KU, Boutellier U, Kurtz A, Schopen M, Koller EA, Bauer C (1989) Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol 66(4):1785–1788CrossRefGoogle Scholar
  13. Eckardt KU, Dittmer J, Neumann R, Bauer C, Kurtz A (1990) Decline of erythropoietin formation at continuous hypoxia is not due to feedback inhibition. Am J Physiol 258(5 Pt 2):F1432–F1437Google Scholar
  14. Fandrey J (2004) Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. AJP Regul Integr Comparative Physiol 286(6):R977–R988.  https://doi.org/10.1152/ajpregu.00577.2003 CrossRefGoogle Scholar
  15. Fliser D, Haller H (2007) Erythropoietin and treatment of non-anemic conditions–cardiovascular protection. Semin Hematol 44(3):212–217.  https://doi.org/10.1053/j.seminhematol.2007.04.008 CrossRefGoogle Scholar
  16. Friedmann B, Frese F, Menold E, Kauper F, Jost J, Bärtsch P (2005) Individual variation in the erythropoietic response to altitude training in elite junior swimmers. Br J Sports Med 39(3):148–153.  https://doi.org/10.1136/bjsm.2003.011387 CrossRefGoogle Scholar
  17. García-Río F, Villamor A, Gómez-Mendieta A, Lores V, Rojo B, Ramírez T, Villamor J (2007) The progressive effects of ageing on chemosensitivity in healthy subjects. Respir Med 101(10):2192–2198.  https://doi.org/10.1016/j.rmed.2007.04.015 CrossRefGoogle Scholar
  18. Ge R-L, Witkowski S, Zhang Y, Alfrey C, Sivieri M, Karlsen T, Resaland GK, Harber M, Stray-Gundersen J, Levine BD (2002) Determinants of erythropoietin release in response to short-term hypobaric hypoxia. J Appl Physiol 92(6):2361–2367.  https://doi.org/10.1152/japplphysiol.00684.2001 CrossRefGoogle Scholar
  19. Genc S, Koroglu TF, Genc K (2004) Erythropoietin as a novel neuroprotectant. Restor Neurol Neurosci 22(2):105–119Google Scholar
  20. Haase VH (2013) Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev 27(1):41–53.  https://doi.org/10.1016/j.blre.2012.12.003 CrossRefGoogle Scholar
  21. Harshman SW, Geier BA, Fan M, Rinehardt S, Watts BS, Drummond LA, Preti G, Phillips JB, Ott DK, Grigsby CC (2015) The identification of hypoxia biomarkers from exhaled breath under normobaric conditions. J Breath Res 9(4):47103.  https://doi.org/10.1088/1752-7155/9/4/047103 CrossRefGoogle Scholar
  22. Hennis PJ, Bussell C, Darlison MG (2010) The lack of associations between alleles at the hypoxia-inducible factor 1A C1772T loci and responses to acute hypoxia. Wilderness Environ Med 21(3):219–228.  https://doi.org/10.1016/j.wem.2010.05.001 CrossRefGoogle Scholar
  23. Janssens JP, Pache JC, Nicod LP (1999) Physiological changes in respiratory function associated with ageing. Eur Respir J 13(1):197–205CrossRefGoogle Scholar
  24. Jedlickova K, Stockton DW, Chen H, Stray-Gundersen J, Witkowski S, Ri-Li G, Jelinek J, Levine BD, Prchal JT (2003) Search for genetic determinants of individual variability of the erythropoietin response to high altitude. Blood Cells Mol Dis 31(2):175–182.  https://doi.org/10.1016/S1079-9796(03)00153-0 CrossRefGoogle Scholar
  25. Jelkmann W (1992) Erythropoietin. Structure, control of production, and function. Physiol Rev 72(2):449–489CrossRefGoogle Scholar
  26. Jelkmann W (2005) Effects of erythropoietin on brain function. Curr Pharm Biotechnol 6(1):65–79CrossRefGoogle Scholar
  27. Knaupp W, Khilnani S, Sherwood J, Scharf S, Steinberg H (1992) Erythropoietin response to acute normobaric hypoxia in humans. J Appl Physiol 73(3):837–840CrossRefGoogle Scholar
  28. Korkushko OV, Ivanov LA, Pisaruk AV, Chebotarev ND (2009) The respiratory function of blood in elderly and old age and the factors that determine it. Hum Physiol 35(2):163–169CrossRefGoogle Scholar
  29. Kronenberg RS, Drage CW (1973) Attenuation of the ventilatory and heart rate responses to hypoxia and hypercapnia with aging in normal men. J Clin Investig 52(8):1812–1819.  https://doi.org/10.1172/JCI107363 CrossRefGoogle Scholar
  30. Lakens D (2013) Calculating and reporting effect sizes to facilitate cumulative science. A practical primer for t-tests and ANOVAs. Front Psychol 4:863.  https://doi.org/10.3389/fpsyg.2013.00863 CrossRefGoogle Scholar
  31. Lhuissier FJ, Canouï-Poitrine F, Richalet J-P (2012) Ageing and cardiorespiratory response to hypoxia. J Physiol 590(21):5461–5474.  https://doi.org/10.1113/jphysiol.2012.238527 CrossRefGoogle Scholar
  32. Liu X-B, Wang J-A, Yu SP, Keogh CL, Wei L (2008) Therapeutic strategy of erythropoietin in neurological disorders. CNS Neurol Disord Drug Targets 7(3):227–234CrossRefGoogle Scholar
  33. Mackenzie RWA, Watt PW, Maxwell NS (2008) Acute normobaric hypoxia stimulates erythropoietin release. High Alt Med Biol 9(1):28–37.  https://doi.org/10.1089/ham.2008.1043 CrossRefGoogle Scholar
  34. Marti HH (2004) Erythropoietin and the hypoxic brain. J Exp Biol 207(18):3233–3242.  https://doi.org/10.1242/jeb.01049 CrossRefGoogle Scholar
  35. Mateika JH, El-Chami M, Shaheen D, Ivers B (2015) Intermittent hypoxia: a low-risk research tool with therapeutic value in humans. J Appl Physiol 118(5):520–532.  https://doi.org/10.1152/japplphysiol.00564.2014 CrossRefGoogle Scholar
  36. Millet GP, Brocherie F, Girard O, Wehrlin JP, Troesch S, Hauser A, Steiner T, Peltonen JE, Rusko HK, Constantini K, Fulton TJ, Hursh DG, Noble TJ, Paris HLR, Wiggins CC, Chapman RF, Levine BD, Kumar VHS, Schmidt WFJ (2016) Commentaries on Viewpoint. Time for a new metric for hypoxic dose? J Appl Physiol 121(1):356–358.  https://doi.org/10.1152/japplphysiol.00460.2016 CrossRefGoogle Scholar
  37. Montero D, Lundby C (2018) Arterial oxygen content regulates plasma erythropoietin independent of arterial oxygen tension: a blinded crossover study. Kidney Int.  https://doi.org/10.1016/j.kint.2018.09.015 Google Scholar
  38. Navarrete-Opazo A, Mitchell GS (2014) Therapeutic potential of intermittent hypoxia: a matter of dose. AJP Regul Integr Comparative Physiol 307(10):R1181–R1197.  https://doi.org/10.1152/ajpregu.00208.2014 CrossRefGoogle Scholar
  39. North BJ, Sinclair DA (2012) The intersection between aging and cardiovascular disease. Circ Res 110(8):1097–1108.  https://doi.org/10.1161/CIRCRESAHA.111.246876 CrossRefGoogle Scholar
  40. Owen WE, Roberts WL (2011) Performance characteristics of a new Immulite® 2000 system erythropoietin assay. Clin Chim Acta 412(5–6):480–482.  https://doi.org/10.1016/j.cca.2010.11.023 CrossRefGoogle Scholar
  41. Płoszczyca K, Langfort J, Czuba M (2018) The effects of altitude training on erythropoietic response and hematological variables in adult athletes. A narrative review. Front Physiol 9:375.  https://doi.org/10.3389/fphys.2018.00375 CrossRefGoogle Scholar
  42. Pokorski M, Marczak M (2003) Ventilatory response to hypoxia in elderly women. Ann Hum Biol 30(1):53–64.  https://doi.org/10.1080/03014460210162000 CrossRefGoogle Scholar
  43. Pokorski M, Walski M, Dymecka A, Marczak M (2004) The aging carotid body. J Physiol Pharmacol 55(Suppl 3):107–113Google Scholar
  44. Prabhakar NR (2013) Sensing hypoxia: physiology, genetics and epigenetics. J Physiol 591(9):2245–2257.  https://doi.org/10.1113/jphysiol.2012.247759 CrossRefGoogle Scholar
  45. Rivard A, Berthou-Soulie L, Principe N, Kearney M, Curry C, Branellec D, Semenza GL, Isner JM (2000) Age-dependent defect in vascular endothelial growth factor expression is associated with reduced hypoxia-inducible factor 1 activity. J Biol Chem 275(38):29643–29647.  https://doi.org/10.1074/jbc.M001029200 CrossRefGoogle Scholar
  46. Santhanam AVR, d’Uscio LV, Katusic ZS (2010) Cardiovascular effects of erythropoietin an update. Adv Pharmacol (San Diego. Calif) 60:257–285.  https://doi.org/10.1016/B978-0-12-385061-4.00009-X CrossRefGoogle Scholar
  47. Savourey G, Launay J-C, Besnard Y, Guinet A, Bourrilhon C, Cabane D, Martin S, Caravel J-P, Pequignot J-M, Cottet-Emard J-M (2004) Control of erythropoiesis after high altitude acclimatization. Eur J Appl Physiol 93(1–2):47–56.  https://doi.org/10.1007/s00421-004-1159-5 CrossRefGoogle Scholar
  48. Serebrovskaya TV, Karaban IN, Kolesnikova EE, Mishunina TM, Swanson RJ, Beloshitsky PV, Ilyin VN, Krasuk AN, Safronova OS, Kuzminskaya LA (2000) Geriatric men at altitude: hypoxic ventilatory sensitivity and blood dopamine changes. Respiration 67(3):253–260.  https://doi.org/10.1159/000029507 CrossRefGoogle Scholar
  49. Sharma G, Goodwin J (2006) Effect of aging on respiratory system physiology and immunology. Clin Interv Aging 1(3):253–260CrossRefGoogle Scholar
  50. Stam H, Hrachovina V, Stijnen T, Versprille A (1994) Diffusing capacity dependent on lung volume and age in normal subjects. J Appl Physiol 76(6):2356–2363CrossRefGoogle Scholar
  51. Turner G, Gibson OR, Watt PW, Pringle JSM, Richardson AJ, Maxwell NS (2017) The time course of endogenous erythropoietin, IL-6, and TNFα in response to acute hypoxic exposures. Scand J Med Sci Sports 27(7):714–723.  https://doi.org/10.1111/sms.12700 CrossRefGoogle Scholar
  52. Verges S, Chacaroun S, Godin-Ribuot D, Baillieul S (2015) Hypoxic conditioning as a new therapeutic modality. Front Pediatr 3:1–14.  https://doi.org/10.3389/fped.2015.00058 CrossRefGoogle Scholar
  53. Viviani B, Bartesaghi S, Corsini E, Villa P, Ghezzi P, Garau A, Galli CL, Marinovich M (2005) Erythropoietin protects primary hippocampal neurons increasing the expression of brain-derived neurotrophic factor. J Neurochem 93(2):412–421.  https://doi.org/10.1111/j.1471-4159.2005.03033.x CrossRefGoogle Scholar
  54. Vogiatzi G, Briasoulis A, Tousoulis D, Papageorgiou N, Stefanadis C (2010) Is there a role for erythropoietin in cardiovascular disease? Expert Opin Biol Ther 10(2):251–264.  https://doi.org/10.1517/14712590903547819 CrossRefGoogle Scholar
  55. Vovk A, Smith DW, Paterson ND, Cunningham DA, Paterson DH (2004) Peripheral chemoreceptor control of ventilation following sustained hypoxia in young and older adult humans. Exp Physiol 89(6):647–656.  https://doi.org/10.1113/expphysiol.2004.027532 CrossRefGoogle Scholar
  56. Wahl P, Schmidt A, deMarees M, Achtzehn S, Bloch W, Mester J (2013) Responses of angiogenic growth factors to exercise, to hypoxia and to exercise under hypoxic conditions. Int J Sports Med 34(02):95–100.  https://doi.org/10.1055/s-0032-1314815 Google Scholar
  57. Westenbrink BD, Voors AA, Ruifrok W-PT, van Gilst WH, van Veldhuisen DJ (2007) Therapeutic potential of erythropoietin in cardiovascular disease. Erythropoiesis and beyond. Curr Heart Fail Rep 4(3):127–133.  https://doi.org/10.1007/s11897-007-0030-5 CrossRefGoogle Scholar
  58. Witkowski S, Chen H, Stray-Gundersen J, Ge RL, Alfrey C, Prchal JT, Levine BD (2002) Genetic marker for the erythropoietic response to altitude. Med Sci Sports Exerc 34(5):S246.  https://doi.org/10.1097/00005768-200205001-01375 CrossRefGoogle Scholar
  59. Zhou XJ, Rakheja D, Yu X, Saxena R, Vaziri ND, Silva FG (2008) The aging kidney. Kidney Int 74(6):710–720.  https://doi.org/10.1038/ki.2008.319 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute III: Sport ScienceOtto von Guericke University MagdeburgMagdeburgGermany

Personalised recommendations